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We present a detailed discussion of the role played by memory, and the nature of self-induced shocks, in an
evolutionary population competing for limited resources. Our study builds on a previously introduced multi-
agent system[Phys. Rev. Lett.82, 3360(1999)] which has attracted significant attention in the literature. This
system exhibits self-segregation of the population based on the “gene” valuep (where 0øpø1), transitions to
“frozen” populations as a function of the global resource level, and self-induced large changes which sponta-
neously arise as the dynamical system evolves. We find that the large, macroscopic self-induced shocks that
arise are controlled by microscopic changes within extreme subgroups of the population(i.e., subgroups with
“gene” valuesp,0 andp,1).
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I. INTRODUCTION

The dynamical behavior of a population of objects or
“agents”(e.g., software or hardware modules, cellular organ-
isms such as bacteria or viruses, human beings, animals) is
of interest across a range of disciplines. Physics is arguably
luckier than most disciplines in that the agents of interest
(i.e., particles) do not adapt their behavior according to past
failure, hence evolving new sets of rules as time progresses.
Nor do the agents in question have any individual memory.
Biological and social disciplines are not so lucky. Through a
desire to develop a minimal model that could incorporate
such features into a manageable yet nontrivial system, Arthur
introduced the so-called “El Farol” bar problem, which con-
cerns the repeated competition between bargoers to attend a
popular bar with limited seating[1]. Challet and Zhang[2]
subsequently introduced a binary version of this bar problem
for the case where the amount of resource(e.g., number of
seats) is just less than half the number of agents(e.g., pos-
sible attendees). This system is referred to as the minority
game.

The minority game does not allow an agent to continu-
ously evolve new strategies and hence explore the entire
strategy space. The minority game is also essentially deter-
ministic, apart from occasional coin tosses which are used to
break ties in strategy scores. Furthermore, the resource level
is set at just less than half the number of agents, so that there
are always more losers than winners. To help overcome these
limitations, Johnsonet al. introduced a stochastic version of
the minority game[3], which is subsequently referred to as
the genetic model, in which an agent’s strategy(character-
ized by a “gene” valuep) can evolve indefinitely in time and
is in principle allowed to access the entire space of strategies
(i.e., all p values). The resulting genetic model has provoked
much interest in the literature(for example, see Refs.[4–9]).
As commented in the original paper of Johnsonet al. [3] and
confirmed by Burgoset al. [5,7], the self-segregation ob-
served in the genetic model is insensitive to changes in an
agent’s memory lengthm.

In this paper we present a detailed discussion of the role
of memory in the genetic model. We also explain the origin
of the remarkable steplike structure in the global output time
series as a function of the resource level, which was first
observed by Johnsonet al. in Ref. [4]. We then introduce
(Sec. III) a variant of the genetic model in which the number
of agents competing at a given time step is allowed to fluc-
tuate. Because of the analogy with the grand canonical en-
semble in physics, we shall refer to this model as the “grand
canonical genetic model”(GCGM) By considering versions
of the GCGM both with and without memory, we shall in-
vestigate the endogenous(i.e., self-induced) large changes
that arise in the system. These large changes represent abrupt
macroscopic “shocks,” and occur with a greater probability
than would be expected based on random walk statistics. We
provide a detailed analysis of the mechanism that generates
these large changes.

II. EFFECTS OF MEMORY IN THE GENETIC MODEL

Various papers[3–5,7] have made claims with regard to
the role of memory in the genetic model. To date, though, no
one has performed a detailed analysis of this problem. In this
section we present such an analysis which involves compar-
ing the behavior of the original model with that of a memo-
ryless variant. The results presented here for the genetic
model are reminiscent of earlier results for the minority
game. In particular, Hartet al. [10] showed that a crowd-
anticrowd theory which assumesrandomhistory provides a
quantitative description of the time-averaged fluctuations in
the minority game. Subsequently Cavagna[11] demonstrated
numerically that the time-averaged fluctuations were indeed
largely unaffected if the global history was replaced with
randomly generated data.

Ceva and Burgos[5] explicitly investigated the role of
memory in the genetic model; however, the results are re-
stricted to a comparison of the gene value distributions in the
minority case, in which the amount of resource is just less
than half the number of agents. In contrast, in this section we
shall treat the general case in which the amount of resource
is unrestricted, and provide some theoretical analysis to ex-*Electronic address: roland.kay@physics.ox.ac.uk
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plain the differences that we shall observe between the two
models. We shall show in Secs. II G and II H that the obser-
vation that the gene value distributions are identical holds
only in the special case considered in Ref.[5]. Furthermore,
we shall show that the feedback introduced by the existence
of memory does influence the behavior of the model in that it
controls the time average of the prediction(Sec. II G) and
introduces autocorrelations into the mean attendance time
series(Sec. II I). By comparing and contrasting the mem-
oryless genetic model with the original model, we shall be
able to make some important observations about the memo-
ry’s true significance. We shall also answer some important
questions as to the extent to which memory is of benefit to
the agents and the system as a whole.

Before going on to describe the genetic model, we note
that all of the numerical results presented in this paper were
obtained using the model parameters listed in Table I unless
otherwise stated. Similarly, all time averages are taken over
the period 10 000, t,60 000, the first 10 000 time steps
being neglected to allow any transients due to the initial
conditions to die away.

A. Original genetic model

In this section we present expressions for some of the
most basic quantities in the original genetic model, which
includes the memory. In Sec. II B we shall consider the
equivalent expressions in the memoryless variant. We start
with a brief summary of the genetic model. Fuller details are
given in Ref.[3].

The genetic model consists of a population of agents who
must decide at every time step between two possible choices
which we will label −1 and +1. We shall refer to the decision
of an agenti as itsaction ai;t. Each agent is defined by agene
value pi;t, which can take any value 0øpi;tø1. At each time
step the model makes aprediction ht of the outcome of the
time step available to all of the agents. Each agent chooses
its action to be equalsai;t= +htd or oppositesai;t=−htd to this
prediction with probabilitypi;t or 1−pi;t, respectively.ht is
calculated based on a global memory that the model main-
tains of the outcomes of the previousm time steps and the
assumption that patterns that have occurred in the time series
of these outcomes in the past will recur in the future. The
parameterm is known as thememory length. For example, if
m=2 then at timet the memory might contain the following
entries: s−1,−1; +1d, s−1, +1;−1d, s+1,−1;−1d, and s+1,
+1; +1d. This signifies that the last time the outcome of two
consecutive time steps was −1 the outcome of the next time
step was +1. Similarly the last time the sequence −1+1 oc-
curred, it was followed by a −1. If at timet the outcome of
the previous two time steps was +1 and then −1 then, in this
case,ht=−1. The outcome of each time step is determined
based on the actions of all of the agents. From now on we

shall refer to the outcome as theglobal actionat time t, At.
Agent gene values are not constant with time. Each agent

maintains a record of itsscore, si;t, which determines when it
changes its gene value. At every time step,si;t increases by
one unit ifai;t=+At and decreases otherwise. Ifsi;t=−D then
the agentmutates. The parameterD is known as thedeath
score. When an agent mutates it chooses a new gene value at
random from a range of values of width 2r centered on the
old gene value. The parameterr is known as themutation
range.

There are two opposite definitions of the global actionAt
used in the literature. For example, Ref.[4] definesAt, by
analogy with Zhang and Arthur’s bar model, to be the state
of the bar at timet. Thus, At=+1 would denote anover-
crowdedbar and the optimal action of each agent would be
to stay at home(i.e. ai;t=−1). However, in this paper we
shall adopt the convention of Ref.[3] wherebyAt represents
the optimal decision of each agent at timet. As defined in
Ref. [4], the global actionAt is given, in terms of a model
parameterl which can take values 0ø l ø1, by

At = H+ 1, nt
+1 ø Nl,

− 1, nt
+1 . Nl,

J s1d

where

nt
+1 =

1

2Soi

ai;t + ND . s2d

In other words,nt
+1 is the number of agents for whichai;t

=+1. We shall refer tol as theresource level.
Let hpi;tji denote the set of values ofpi;t for all agents at

time t. As Lo et al. state[12], the ensemble average number
of agents following the predictionknt

+htl is given by

knt
+htl = Np̄t where p̄t =

1

N
o
i=1

N

pi;t. s3d

In equilibrium, where the population evolves such thatp̄t is
approximately constant, the ensemble averageknt

+htl and the
time averageknt

+htlt will coincide. Thus,

knt
+htlt < Nkp̄tlt. s4d

B. Memoryless genetic model

In this section we introduce a memoryless variant of the
original genetic model. In contrast to the original model de-
scribed above, where the gene value of theith agentpi;t gives
the probability of it choosing to follow the predictionsai;t

= +htd, in the memoryless modelpi;t gives the probability
thatai;t= +1 directly. With this modification the predictionht
and hence the global memory that produce it become redun-
dant and can be removed from consideration. The agents in
this variant are memoryless, by which we mean that their
actionsai;t at timet are independent of the state of the model
at earlier times.ai;t is dependent only onpi;t. An equivalent
way of considering this is to takeht=+1∀ t. The global ac-
tion At and the number of agents attending the barnt

+1 are

TABLE I. Parameters used to generate numerical data.

Number of agents N=501 Memory length m=4

Death score D=4 Mutation range r =0.2
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unchanged and so are given by Eqs.(1) and (2) as before.
However, Eq.(4) becomes

knt
+1lt < Nkp̄tlt. s5d

C. Comparison of the performance of the original and
memoryless models

We shall now compare the performance of the two mod-
els. In order to quantify performance we defineUt to be the
total number of points scored by all of the agents at timet.
Therefore we are considering the performance of the system
as a whole, rather than that of individual agents. If we con-
sider the models to be analogous to an economic system then
the question that we are investigating becomes to what extent
the agents in this system can exploit the potential wealth
available to them as a population. Note that in Ref.[6] Bur-
goset al. treat the memoryless genetic model in terms of a
cost function given by the second moment ofnt

+1 with re-
spect toNl. However, this cost function is symmetric in that
it assigns an equal cost to deviations ofnt

+1 from Nl of op-
posite signs. As we shall see,Ut is not symmetric aboutNl
and hence can distinguish between positive and negative
deviations.

1. Original genetic model

First we shall derive expressions forUt in the model with
memory. Later we will see how these expressions are modi-
fied in the absence of the memory. From Eq.(1) the condi-
tion thatAt= +1 is

nt
+ht ø Nl if ht = + 1,

nt
+ht ù Ns1 − ld if ht = − 1. s6d

Now consider the total number of points scored by the
agents,Ut. Agents for whichai;t= +At will gain one point
whereas agents for whichai;t=−At will lose. If ht= +1 and
At= +1 it will be thent

+ht agents who choose to followht who
will gain. If At=−1, then theN−nt

+ht agents who choose to
refute ht will gain. Thus, using Eq.(6), we have, forht
= +1,

Utsnt
+htd =H 2nt

+ht − N if nt
+ht ø Nl,

− 2nt
+ht + N if nt

+ht . Nl.
J s7d

When ht=−1 andAt= +1 it will be the N−nt
+ht agents who

choose to refute the prediction who will gain, and vice versa
for At=−1. Thus, forht=−1 the above expression becomes,

Utsnt
+htd =H− 2nt

+ht + N if nt
+ht ù Ns1 − ld,

2nt
+ht − N if nt

+ht , Ns1 − ld.
J s8d

The expressions in Eqs.(7) and(8) are plotted in Fig. 1. The
black and white circles represent the value ofnt

+ht at whichUt
is a maximum forht= +1 andht=−1, respectively. We shall
call the value ofnt

+ht at whichUt is a maximum theoptimal
value and denote it bynt,opt

+ht . From Fig. 1 we can see thatnt,opt
+ht

is given as follows.
For l ,0.5,

nt,opt
+ht = H Nl + 1 if ht = + 1,

Ns1 − ld − 1 if ht = − 1.
J s9d

For l .0.5,

nt,opt
+ht = H Nl if ht = + 1,

Ns1 − ld if ht = − 1.
J s10d

The most important feature of this equation to recognize is
that, in general, there is no unique value ofnt,opt

+ht independent
of t. Only if ht= +1 or −1∀ t would such a unique solution
exist.

We note in passing that sinceN=nt
+1+nt

−1 the optimal
value ofnt

+1 in the original model is

nt,opt
+1 = Nl. s11d

In contrast tont,opt
+ht , the optimal value ofnt

+1 is independent of
t. Nevertheless, the most important quantity for the analysis
that we present here isnt,opt

+ht in the case of the original model
since, as we shall see later, it is the value ofnt

+ht that the
agents can directly control and not that ofnt

+1.
Reference[4] demonstrated the existence of so-calledfro-

zen regimes which exist whenl lies outside the region
bounded by two critical values, which we shall label herelc1
and lc2. These regimes were described asquenchedby Bur-

FIG. 1. Ut as a function ofnt
+ht in the original genetic model with memory. The dashed lines indicateUt whenht=−1, the narrow lines

Ut whenht= +1. The bold lines represent those part of the lines defined byUt that are invariant underht→−ht. The black and white circles
represent the values ofnt

+ht at whichUt is a maximum whenht= +1 and −1, respectively.
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goset al. in Ref. [7]. The frozen regime obtains whenl , lc1
or l . lc2. The behavior of the genetic model in these regimes
is well understood[4,7]; therefore we shall restrict ourselves
to a consideration of the dynamic regime. In what follows,
unless otherwise stated,l takes values in the interval
lc1, l , lc2. Therefore, inequalities such asl ,0.5 should be
taken as shorthand forlc1, l ,0.5.

Compared with the variation ofht, agent mutation is a
slow process. The value ofht changes on a time scale of
Dt,1 while agents mutate on a time scaleDt@D. The result
of this is that we should not expect the agents to be sensitive
to the instantaneous value ofUt given in Eqs.(7) and (8).
They will be sensitive to only the time averagekUtlt. Trans-
lated to the conventions used here, Ref.[4] found that

khtlt = H+ 0.5 l . 0.5,

− 0.5 l , 0.5.
J s12d

Therefore, forl ,0.5, ht= +1 for a fraction 0.25 of the time
steps whereas the fraction is 0.75 forl .0.5. Thus we can
calculate the following expression forkUtsnt

+htdlt.
For l ,0.5,

kUtlt =5
2nt

+ht − N, nt
+ht ø Nl,

nt
+ht −

N

2
, Nl , nt

+ht , Ns1 − ld,

− 2nt
+ht + N, nt

+ht ù Ns1 − ld.
6 s13d

For l .0.5,

kUtlt =5
2nt

+ht − N, nt
+ht , Ns1 − ld,

nt
+ht −

N

2
, Ns1 − ld ø nt

+ht ø Nl,

− 2nt
+ht + N, nt

+ht . Nl.
6 s14d

This expression is plotted in Fig. 2(a). From the figure we
can see that the optimal value ofnt

+ht that maximizes
kUtsnt

+htdlt is given by

nt,opt
+ht = HNs1 − ld − 1, l , 0.5,

Nl, l . 0.5.
J s15d

Note that, although we have assumed the values given in Eq.
(12) for khtlt, the values ofnt,opt

+ht given in the above equation

in fact depend only upon the signs of the values ofkhtlt. The
significance of this will become apparent in Sec. II G.

Let Pi;t be the probability thatnt
+ht= i. Lo et al. [12] dem-

onstrated thatPi;t will be approximately Gaussian with mean
m=knt

+htl=Np̄t and standard deviations=Îoipi;ts1−pi;td.
From Eq.(15) it follows that the optimal from ofPi;t will
obtain if p̄t is as given by the following equation ands=0:

p̄t,opt= 51 − l −
1

N
, l , 0.5,

l , l . 0.5.
6 s16d

The term 1/N results from the asymmetry of the condition in
Eq. (1) which determinesAt in terms ofnt

+1. For l , lc2 in the
case ofN@1 considered here 1/N!1−l and so we can ne-
glect this term.s=0 if hpi;tji contains only the values 0 and
1. Let Psxd be the distribution ofhpi;tji such thatNPsxddx is
the probability that, if an agenti is chosen at random from
the sethpi;tji thenxøpi;tøx+dx. The optimal form forPsxd
is then

Psxd = s1 − p̄t,optddsxd + p̄t,optds1 − xd. s17d

This represents a distribution that is zero everywhere except
for peaks atx=0 andx=1, the relative heights of the peaks
being such thatm= p̄t,opt. Burgoset al. [6] derived a similar
expression forPsxd in the case of the memoryless model
using their symmetric cost function.

It is well known [3,13,14] that in the long time limit
wheret→` the population of agents evolves such thatPsxd
is strongly peaked aboutx=0 andx=1 andp̄t takes the value
given by Eq. (16). Although the agents never manage to
achieve a form such that the standard deviationssnt

+ht ,td is
exactly zero, they do approach the optimal distribution rep-
resented by Eq.(17). Thus, we can see that the population of
agents is capable of evolving such thatPi;t is close to its
optimal form and the time series of values ofnt

+ht contains
values clustered around the optimal valuent,opt

+ht given by
Eq. (15).

2. Memoryless genetic model

In this section we shall see how the above analysis applies
to the memoryless variant of the model.Ut in the memoryless
model is given by Eq.(7) above. Thus,

FIG. 2. kUtsnt
+htdlt in (a) the original genetic model with memory and(b) the memoryless model.
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Utsnt
+1d = H 2nt

+1 − N if nt
+1 ø Nl,

− 2nt
+1 + N if nt

+1 . Nl.
J s18d

Equation(18) is plotted in Fig. 2(b). Once again the black
circle represents the value ofnt

+1 at whichUt is a maximum.
From the figure we can see that the optimal value ofnt

+1 is
now

nt,opt
+1 = HNl + 1 if l , 0.5,

Nl if l . 0.5.
J s19d

Unlike the original genetic model, this optimal value ofnt
+1

is independent oft. As before, the optimal form ofPi;t will
be that for whichs=ssnt

+1,td=0 andm=knt
+1lt=Np̄t with p̄t

given by

p̄t,opt= 5l +
1

N
if l , 0.5,

l if l . 0.5.
6 s20d

Note that, from Eqs.(16) and (20), this will mean that the
gene value distributions of the agents forl ,0.5 in the origi-
nal and memoryless models will not be identical, but will be
related by the transformationhpi;tjt→ h1−pi;tjt.

3. Direct comparison of the models

In this section we shall compare the value ofUtsnt,opt
+ht d in

the original genetic model with that ofUtsnt,opt
+1 d in the mem-

oryless genetic model in order to establish what effect the
memory has on the performance of the model. In both the
original genetic model with memory and the memoryless
variant, the agents are rewarded based on the value ofnt

+1.
This is because the value of the global action is determined
from the condition onnt

+1 in Eq. (1) and an agenti gains or
loses one point depending on whetherai;t=±At. There is,
however, one difference between the two models that will be
extremely important in what follows. The population of
agents can controlPi;t through their effect onp̄t and s
=Îoipi;ts1−pi;td. In the memoryless modelPi;t represents
the probability distribution fornt

+1, whereas in the original
model Pi;t represents the distribution function fornt

+ht. The
result of this is that in the memoryless model the population
of agents can directly control the values that occur in the
time series ofnt

+1 whereas in the original model they can
control only the values ofnt

+ht. In the latter casent
+1 will also

depend on the value ofht over which the agents have no
direct control.

From Eqs.(13), (14), and (18) it follows that the maxi-
mum values ofUt [which obtain atnt,opt

+ht and nt,opt
+1 given by

Eqs.(15) and (19)] are, for the model with memory,

Utsnt,opt
+ht d =5

N

2
s1 − 2ld − 1 if l , 0.5,

N

2
s2l − 1d if l ù 0.5,6 s21d

and for no memory,

Utsnt,opt
+1 d = HNs1 − 2ld − 2 if l , 0.5,

Ns2l − 1d if l ù 0.5.
J s22d

Thus the optimal value ofUt in the original model is exactly
half that achieved by the memoryless model. As we sug-
gested above, the reason for this is because in the original
modelnt

+1 is a function of bothht andPi;t. The instantaneous
optimal value ofnt

+ht will therefore depend onht [see Fig. 1
and Eq.(9)]. Note that the value ofnt

+ht that maximizes the
time averagekUtsnt

+htdlt, nt,opt
+ht given by Eq.(15), will always

be one of the instantaneous optimal values given in Eq.(9).
Thus the agents cannot increaseUt by varyingp̄t. They adopt
the value ofp̄t that is optimal for the most common value of
ht, but they must pay the penalty whenht takes the opposite
value. In contrast, in the memoryless model the instanta-
neous optimal value ofnt

+1 in Eq. (19) is independent oft.
Thus, by evolving such thatp̄t= p̄t,opt the agents can ensure
that nt

+1 is close to the optimal value at each time step.

D. Analytical expressions forŠnt
+1
‹t and s„nt

+1,t…

We can use the same method that we used to derive the
expression forkUtsnt

+htdlt in Eqs.(13) and (14) to obtain ex-
pressions forknt

+1lt and the standard deviationssnt
+1,td of the

nt
+1 time series. From Eq.(3),

knt
+htl = Np̄t. s23d

This leads to the following expression forknt
+1l:

knt
+1l = HNs1 − p̄td if ht = − 1,

Np̄t if ht = + 1.
J s24d

Taking the time average in exactly the same way as in Sec.
II C 1 in equilibrium where p̄t is approximately constant
yields expressions forknt

+1lt and ksnt
+1d2lt:

knt
+1lt =5

N

4
s3 − 2kp̄tltd if l , 0.5,

N

4
s1 + 2kp̄tltd if l . 0.5,6 s25d

kfnt
+1g2lt =5

N2

4
s4kp̄tlt

2 − 6kp̄tlt + 3d + s2 if l , 0.5,

N2

4
s4kp̄tlt

2 − 2kp̄tlt + 1d + s2 if l . 0.5,6 s26d

wheres is the standard deviation ofPi;t introduced in Sec.
II A, which will be of order unity. If we assume that the
agents adopt the optimal distribution in Eq.(17) then we can
take s=0. We now obtain an expression forssnt

+1,td as
follows:

fssnt
+1,tdg2 = kfnt

+1g2lt − fknt
+1ltg2 =

3N2

4
Skp̄tlt −

1

2
D2

+ s2.

s27d

Taking s=0 gives
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ssnt
+1,td =

NÎ3

2
Ukp̄tlt −

1

2
U . s28d

Reference[4] used a mean-field approximation to derive
expressions fornt

+1 andssnt
+1,td in terms ofkhtlt andkp̄tlt. In

particular,

knt
+1lt =5

N

4
s3 − 2kp̄tltd if l , 0.5,

N

4
s1 + 2kp̄tltd if l . 0.5,6 s29d

ssnt
+1,td =

NÎ3

2
Ukp̄tlt −

1

2
U . s30d

Note that we have substituted forkhtlt in the expressions of
Ref. [4] with the values ofkhtlt that obtain forlc1, l , lc2

(khtlt=0.75 for l ,0.5 andkhtlt=0.25 for l .0.5 [4]). Thus,
we can see that the expressions that we derived in Eqs.(25)
and (28) are consistent with those obtained in Ref.[4].

E. Numerical results

In this section we present numerical data which support
the analytical results that we presented in the previous sec-
tions. Reference[4] investigated the behavior ofknt

+1lt and
ssnt

+1,td as a function of the resource levell. Further work
was done with regard to the memoryless genetic model and
generall by Burgoset al. in Refs. [6,7]. Figure 3(a) recalls
the results of Ref.[4]. We can clearly see the dynamic and
frozen regimes forlc1, l , lc2 andl , lc1, l . lc2 respectively.
Figure 3(b) shows knt

+1lt and ssnt
+1,td in the memoryless

variant. Figure 4 showskp̄tlt as a function ofl in the original
and memoryless models andkhtlt in the original model.
Equivalent results forkp̄tlt and khtlt for the original model
were also presented in Ref.[4].

First of all note that in Fig. 4kp̄tlt lies to a very good
approximation on the following lines:

memory:kp̄tlt = H1 − l l , 0.5,

l l . 0.5,
J no memory:kp̄tlt = l .

s31d

This confirms that the population of agents is capable of
evolving to achieve the optimal values ofp̄t given in Eqs.
(16) and (20).

In Sec. II D we presented expressions in Eqs.(25) and
(28)–(30) for knt

+1lt andssnt
+1,td. If we substitute forkp̄tlt in

these equations with the optimal values from Eq.(16), ne-
glecting the term 1/N, we obtain the following analytical
equations forknt

+1lt andssnt
+1,td for lc1, l , lc2:

knt
+1lt =

N

4
s1 + 2ld, ssnt

+1,td =
NÎ3

2
Ul −

1

2
U . s32d

In Fig. 3(a) we show these analytic expressions together with
the numerical data andnt,opt

+1 =Nl from Eq. (11). We can see
that knt

+1lt deviates from the optimal value ofNl for
lc1, l ,0.5 and 0.5, l , lc2 as pointed out in Ref.[4]. We
now know, from Sec. II C 3, that the reason for this is that
the population of agents can only controlnt

+ht directly and
not nt

+1. Thus their performance is reduced by the action of
ht. We can see that forlc1, l , lc2 knt

+1lt instead lies on the

FIG. 3. (a) Numerical results forknt
+1lt andssnt

+1,td as a function of the resource levell in the original genetic model. We also include
lines that representnt,opt

+1 =Nl from Eq.(11) and the analytical expressions forknt
+1lt andssnt

+1,td presented in Eq.(32). (b) knt
+1lt andssnt

+1,td
as a function of the resource levell in the memoryless genetic model.

FIG. 4. Numerical results forkp̄tlt, in the original and memory-
less models, andkhtlt, in the original model, as a function ofl. The
diagonal lines represent the functionskp̄tlt= l and kp̄tlt=1−l.
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line defined by Eq.(32).1 In Fig. 3(a) we also see that the
numerical data forssnt

+1,td agree to a good approximation
with the expressions in Eq.(32). The analytic expression
deviates from the numerical data in the vicinity ofl =0.5. The
reason for this is that when we derived the expression for
ssnt

+1,td in Eq. (28) we assumed that the agent gene value
distribution is as given by Eq.(17) and sos=0. In fact s
Þ0 and nearl =0.5 thes2 term in Eq.(27) dominates. There-
fore ssnt

+1,td does not go to zero as predicted.
In Fig. 3(b) we see that, as predicted by Sec. II C 3,knt

+1lt

in the memoryless model does lie on the optimal line defined
by nt,opt

+1 =Nl for lc1, l , lc2. We can also see thatssnt
+1,td in

the memoryless model is much lower than in the original
model. The large value ofssnt

+1,td in the original model
results from the fact thatnt

+1 is a function of bothnt
+ht, de-

termined viaPi;t by the distribution of agent gene values
Psxd, andht. In the memoryless modelnt

+1 is a function of
Psxd only, which in equilibrium will be approximately con-
stant in form. The small remaining fluctuations are due to the
fact that the agent population does not achieve the ideal dis-
tribution of Eq.(17). We can therefore say that the memory-
less model is efficient in accessing the available resources.

F. Generation of the prediction from an exogenous
source

In Sec. II C we showed that the effect of the predictionht
is to reduce the agents’ performance via its effect onnt

+1.
This being the case, we should expect that the effect of the
prediction on the model would be no different from that of
an exogenous source provided that the value ofkhtlt is pre-
served. In this section we shall check this by comparing the
behavior of the original model with a different memoryless
variant. In this variant the predictionht will be generated by
a random source, external to the model, rather than taking
the value +1∀ t. We shall letRa represent the output of such
a random exogenous source, which contains only the two
values −1 and +1 and for whicha is the time average,
kRalt=a. We represent the binary sequence generated by the
memory forht in the original genetic model byS.

Figure 5 shows numerical results forknt
+1lt in the memo-

ryless model withht given by the exogenous sourcesR0.5
and R1.0. The results for the original model,hhtjt=S, are
included for comparison. The results forhhtjt=R1.0 duplicate
those presented in Fig. 3(b) sincehhtjt=R1.0 is equivalent to
ht=+1∀ t. In other words takinghhtjt=R1.0 is exactly equiva-
lent to the memoryless model that we considered in previous
sections. In Fig. 5 the data produced usinghhtjt=R0.5 for
knt

+1lt andssnt
+1,td agree with those from the original model

for lc1, l , lc2. For l , lc1 and l . lc2 the data from the origi-
nal model switch to agree with those from the memoryless
model with hhtjt=R1.0 corresponding to the value ofkhtlt

from the original model in these regions. Note that there is
no need to considerR−0.5 and R−1.0. The lack of physical

significance attached to the labeling of the states ofht means
that the model behaves equivalently forhhtjt=R±a.

These results confirm that the original genetic model and
the memoryless genetic model withht taken from an exog-
enous source can be regarded as equivalent when considering
knt

+1lt. In contrast, we shall see in Sec. III that this does not
apply when considering higher moments.

G. The values ofŠht‹t

So far we have treated the values ofkhtlt that obtain for
lc1, l ,0.5 and 0.5, l , lc2 as values to be derived empiri-
cally by numerical simulation. Now we shall discuss the the-
oretical reasons for their observed values.

Lo [14] has presented a theory that predicts, using our
conventions, the following values forkhtlt:

khtlt =5
− 1 for l , lc1,

−
1

3
for lc1 , l , 0.5,

+
1

3
for 0.5, l , lc2,

+ 1 for lc2 , l .

6 s33d

However, numerical simulation robustly yields values of
khtlt<± 1

2 in the dynamic regime. In what follows we briefly
recall Lo’s analysis with the addition of some observations
that explain why the numerical and analytical results differ.
Note that as we pointed out in Sec. II C 1 the absolute values
that obtain forkhtlt in the dynamic regime are not important
for the theory that we present here. As long askhtlt,0 for
lc1, l ,0.5 andkhtlt.0 for 0.5, l , lc2 everything that we
have said aboutp̄t,opt will remain unchanged. Only the mag-
nitude of the relative performance of the original and mem-
oryless genetic models depends upon the values taken by
khtlt.

Lo’s analysis[14] hinges on the observation that

kAtlt = khtlt. s34d

It is then easy to show thatkAtlt is given by

1Note that in factknt
+1lt lies slightly closer toN/2 than Eq.(32).

This is due to the deviation depicted in Fig. 6(a) which we shall
discuss in Secs. II G and II H.

FIG. 5. Numerical results forknt
+1lt andssnt

+1,td in the memo-
ryless model using exogenous sourcesR0.5 and R1.0 for ht. The
results forknt

+1lt and ssnt
+1,td in the original model, whereht is

determined by the memoryshhtjt=Sd, are included for comparison.
Each pair of lines showsknt

+1lt and ssnt
+1,td for hhtjt given as

indicated.
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kAtlt = S khtlt + 1

2
Ds2I1 − 1d + S1 − khtlt

2
Ds2I2 − 1d, s35d

where

I1 = o
i=0

Nl

Pi;t, I2 = o
i=Ns1−ld

N

Pi;t. s36d

Finally, using Eq.(34) gives

khtlt =
I1 + I2 − 1

I2 − I1 + 1
. s37d

Assuming thatm=nt,opt
+ht from Eq.(15), we can see thatI1 and

I2 will be given by

I1 = 50 if l , 0.5,

1

2
if l . 0.5,6 I2 = 51

2
if l , 0.5,

1 if l . 0.5,
6 s38d

since the summations cover the entire peak of the Gaussian,
exactly half of it, or none at all. From Eqs.(37) and(38) we
obtain values forkhtlt in the dynamic regime of

khtlt =5−
1

3
if l , 0.5,

+
1

3
if l . 0.5,6 s39d

which agree exactly with the values found by Lo in Ref.
[14].

The values given in Eq.(38) depend on the assumption
that knt

+htlt is given by the optimal value of Eq.(15). In fact,
as we see in Fig. 6(a), numerical simulation using a large
number of agents reveals that this is not the case. In the
figure nt,opt

+ht −knt
+htlt<0.002N corresponding top̄t,opt−kp̄tlt

<0.002. Careful observation of Fig. 4 reveals thatkp̄tlt al-
ways lies slightly closer to 0.5 than the value predicted by

Eq. (16) in the original model. As we can see from Fig. 6(a),
this changes the values of the summations in Eq.(38) as
follows:

I1 = H 0 if l , 0.5,

0.677 if l . 0.5,
J I2 = H0.323 if l , 0.5,

1 if l . 0.5,
J

s40d

which by Eq.(37) yields the following values forkhtlt:

khtlt = H− 0.511 if l , 0.5,

+ 0.511 if l . 0.5.
J s41d

These figures agree much more closely with the numerically
observed values ofkhtlt=±0.5 than the values obtained in Eq.
(38).

We can therefore see that the values ofkhtlt=±0.5 that
obtain in the dynamic regime result from the fact thatp̄t
deviates slightly from the optimal value of Eq.(16). In the
absence of this deviation we would indeed obtain the values
given in Eq.(33) for khtlt. We can see that the memory does
indeed have a nontrivial role to play in the genetic model.
The feedback between the predictionht and the global action
At controls the values ofkhtlt that obtain in the dynamic
regimelc1, l , lc2.

H. Deviation of p̄t from its optimal value

In Sec. II C when we calculated the optimal value ofp̄t in
Eq. (16), we implicitly assumed that the gene value distribu-
tion is given by Eq.(17) and that therefores=0. If s is
nonzero then the values ofnt

+1 will be spread aboutknt
+1lt.

Considering the asymmetric nature of the discontinuity inUt
at its maximum value in Fig. 2(a), we might expect the
agents to evolve such thatp̄t, p̄t,opt in order to increase their
total earnings. However, the asymmetry at the discontinuity
in the memoryless model is greater than in the original. Thus,
we would also expect the deviation ofp̄t to be greater in the
memoryless model.

Figure 6(b) shows numerical data forPi;t in the memory-
less model. Any deviation in the figure is too small to be
observable(see also Fig. 4). Therefore, we conclude that a
different effect, one most probably related to the variation of
the predictionht, must be responsible for the deviation ob-
served in the original model.

I. Autocorrelation of nt
+1

In this section we consider another property of the genetic
model: the autocorrelation of the time seriesnt

+1. First of all
we shall present numerical data contrasting the behavior of
the autocorrelation in the original and memoryless models.
We shall then consider a Markovian analysis of the original
genetic model which explains the behavior of the autocorre-
lation of nt

+1 observed therein in the simplest case ofm=1.

1. Numerical results

We define the autocorrelationCtsxtd of a time seriesxt as
follows:

FIG. 6. Numerical data forPi;t in (a) the original model with
memory and(b) the memoryless model. The numbers under the
curve represent the sum of the values of the data points lying on
either side of the cutoff indicated by the dashed line. Note that in(a)
this cutoff is atnt

+ht=Nl if l .0.5 andnt
+ht=Ns1−ld otherwise. The

model parameters were as given in Table I except thatn=10 000
and the value of nt

+ht was sampled over the interval
2000, t,102 000.
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Ctsxtd =
kxtxt+tlt − kxtlt

2

kxt
2lt − kxtlt

2 , s42d

wheret gives the lag time.
Figure 7 shows the autocorrelation of the attendance time

seriesCtsnt
+1d for 0øtø10 and 1ømø5. We can see from

the figure that forl =0.5 there is no significant correlation for
t.0. For l Þ0.5, in contrast,Ctsnt

+1d as a function oft has a
clear structure. The magnitude ofCtsnt

+1d is nonzero fort
=sm+1di, wherei =1,2,3, . . .nt

+1 andnt+t
+1 are anticorrelated

for odd values ofi and correlated for even values. Figure 8
showsCtsnt

+1d for the same values oft andl depicted in Fig.
7. However, this timeht was derived from a random exog-
enous source rather than the memory. It is clear from a com-
parison of Figs. 7 and 8 that the structure observed inCtsnt

+1d
in Fig. 7 is present only in the original model with memory.
Plotting the autocorrelation of the prediction time seriesht
yields a graph identical in form to Fig. 7. From this we can
see that the structure present in Fig. 7 derives from structure
present in the prediction time series.

Thus, one of the functions of the memory is to introduce
nonzero autocorrelations into the prediction time seriesht.
These will clearly not be present in either of the memoryless
models in which eitherht=+1∀ t or ht=Ra. In Ref. [5] Bur-
gos and Ceva found that, forl =0.5, the gene value distribu-
tion functions in the models with and without memory(tak-
ing ht=+1∀ t) are equivalent. Further, in Ref.[7] Burgos

et al.state that “a simplified version of the model,that makes
no use of memoryis indistinguishable from the original for-
mulation.” We agree that, in the restricted case ofl =0.5 con-
sidered in Ref.[5], the gene value distribution functions and
the autocorrelation functions of thent

+1 time series are indis-
tinguishable. This does not, however, represent a rigorous
proof of equivalence. In contrast, the numerical data pre-
sented in Fig. 7 demonstrate that, forl Þ0.5, the two formu-
lationsare distinguishable. While forht=Ra the memoryless
model yields equivalent results forknt

+1lt, it does not do so
for higher moments. Therefore, any analysis in which pos-
sible autocorrelations in thent

+1 time series could be a factor
could not be conducted using the memoryless model. Also,
the deviation ofp̄t from the optimal value of Eq.(16) (dis-
cussed in Secs. II G and II H) means that the gene value
distribution functions are also not strictly indistinguishable
accept atl =0.5. Furthermore, Fig. 3 demonstrates that ifht in
the memoryless model is taken to be constant the two models
are also distinguishable, forl Þ0.5, in terms ofknt

+1lt.

2. Markovian analysis

In this section we will present a Markovian analysis of the
action of the memory in the genetic model. This analysis
must be performed separately for each value ofm of interest
since each leads to a distinct state space. Here we shall
present the analysis form=1 only. Treatment of higher val-
ues ofm is possible, although cumbersome, since they lead
to state spaces that are too large to be treated conveniently by
hand.

The first stage of our analysis is to define a convention for
labeling the states of the memory. Each state label must de-
fine the values ofht, At, and the state of the memory. This is
the minimum set of information needed to calculate the state
transition probabilities. Form=1 the memory will contain
2m=1=2 entries corresponding to the two possible histories
At−1=−1 andAt−1=+1. We shall label these entriesmt

−1 and
mt

+1, respectively. Each state therefore comprises four at-
tributes each of which can take values ±1. There are there-
fore 16 possible states which we denote using the shorthand
notation described in Fig. 9(b). We label these states by anal-
ogy with the binary number system as shown in Fig. 9(a).
Note thatht gives the prediction made available to the agents
at time t whereasmt

−1 and mt
+1 represent the state of the

memory once it has been updated. Therefore, the prediction
agrees with one of the states of the memory at timet−1 and
not at timet.

For the sake of clarity we shall consider the case of
l ,0.5. By symmetry the results that we derive will also
apply to l .0.5. From Eqs.(6) and(40) and the definition of
Pi;t, we have the following expression for the probability
that At=+1:

PfAt = + 1g = HI2 = a if ht = − 1,

I1 = 0 if ht = + 1,
J s43d

FIG. 7. Autocorrelation of thent
+1 time series for the range of

values ofm shown. Model parametersN=1000,(a) l =0.4, and(b)
l =0.5.

FIG. 8. Autocorrelation of thent
+1 time series withht given by a

random exogenous source. Model parametersN=1000, (a) l =0.4,
ht=R−0.5, and(b) l =0.5, ht=R0.0.
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where I1 and I2 are given by Eq.(36) and a represents the
numerical value ofI2 in Eq. (40). The result of this is that if
the predictionht=+1 then the global actionAt=−1 with
probability P=1. We can therefore discard states 3, 7, 11,
and 15 from consideration. In each of these statesht=+1 and
At=+1 and thus they will never be visited by the model.

Using Eq. (43) we derive the state transitions shown in
Fig. 10. We can see that each state makes a transition either
to one other state with probabilityP=1 or to one of two
possible states with probabilitiesP=a andP=1−a, respec-
tively. This information can be used to further simplify the
state space. We need not consider states that have no inward
transitions or states that have inward transitions only from
states that we have removed. This allows us to remove states
2, 8, 9, 10, 12, and 13 from consideration. The model will
not visit these states once initial transients have died away.
This reduces our state space from sixteen states to only six:
0, 1, 4, 5, 6, and 14.

Figure 11 shows the state transition diagram correspond-
ing to Fig. 10 in the simplified state space described above.
From this we can form the following Markov transition ma-
trix, in which the remaining states are arranged in numerical
order:

T =1
1 − a 1 − a 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 − a 0

0 0 0 0 0 1

a a 0 0 0 0

0 0 0 0 a 0

2 s44d

which defines the stationary Markov chain.
From Eq. (44) we can derive then-step autocorrelation

functionsCnshtd. Recall the oscillatory dependence ofCtshtd
on t [see Fig. 7(a) and Sec. II I 1]. If C1shtd=0 andC2shtd
=−e (wheree is of order 0.1) then we would expect to ob-
serve the dependence depicted in the figure. Ifht andht+2 are
anticorrelated anduC2shtdu,1 then we should expectht and

ht+4 to be correlated anduC4shtdu, uC2shtdu, and so on. Thus
the form of Ctshtd for m=1 depends only on the values of
C1shtd andC2shtd.

First we calculate the stationary states of the Markov
chain defined by Eq.(44). This gives

s=
1

s1 + ad21
1 − a

a

as1 − ad
a2

a

a2

2 . s45d

From Eq.(42), the one-step autocorrelationC1shtd is given by

C1shtd =
khtht+1lt − khtlt

2

kht
2lt − khtlt

2 . s46d

Therefore we need to calculate values forkht
2lt, khtlt, and

khtht+1lt. Sinceht=±1, kht
2lt=1. In order to calculate values

for the other two averages it is necessary to form the vectors
h0 andh1 which, respectively, give the values ofht andhtht+1
for each of the states in the simplified state space. The ele-
ments ofh0 can be read directly from Fig. 9. This gives

h0 = s− 1 + 1 − 1 + 1 − 1 − 1d. s47d

Taking the scalar product ofh0 with s gives

FIG. 9. (a) The labels used to index the 16 possible states. The
states that are crossed out are those in whichht=+1 andAt=+1.
These can be omitted due to Eq.(43). (b) A key for the graphical
representation of each state.

FIG. 10. List of the one-step transitions that the model can make
from each of the states listed in Fig. 9.

FIG. 11. State transition diagram corresponding to the transi-
tions depicted in Fig. 10 in the simplified state space. The arrow
labels give the transition probabilities.
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khtlt = h0 ·s=
a − 1

a + 1
. s48d

In Sec. II G we used an alternative method, not restricted to
m=1, to derive the expression forkhtlt in Eq. (37). Substi-
tuting I1=0 and I2=a in Eq. (37) yields Eq. (48) above.
Thus, the analyses presented here and in Sec. II G are
consistent.

We can deriveh1 by multiplying the values ofht andht+1
in Fig. 10. This gives

h1 = s+ 1 − 1 − 1 + 1 + 1 − 1d. s49d

Once again taking the scalar product withs gives

khtht+1lt = h1 ·s= Sa − 1

a + 1
D2

. s50d

Therefore, from Eqs.(46), (48), and(50) we have

C1shtd = 0. s51d

Thus, we expectht and ht+1 to be uncorrelated, which is in
agreement with Fig. 7(a).

The two-step autocorrelationC2shtd is given by

C2shtd =
khtht+2lt − khtlt

2

kht
2lt − khtlt

2 . s52d

Therefore in order to calculate the two-step autocorrelation
function C2shtd we must calculatekhtht+2lt. As before we
must form the vectorh2 corresponding to the values ofhtht+2
for each of the states in the simplified space. This can be
done following the method described in Fig. 12, which gives

h2 = s+ 1 − 1 + 1 − 1 − 1 − 1d. s53d

Taking the scalar product withs gives

khtht+2lt = h2 ·s=
s1 − 3ads1 + ad

s1 + ad2 . s54d

From Eqs.(48), (52), and(54) we have

C2shtd = − a. s55d

Therefore, from Eqs.(51) and (55) we have that

Ctshtd = 1,0,−a,0,a2,0,−a3, . . ., t = 0,1, . . . . s56d

Note that as a result of this the autocorrelation ofht at m
=1 gives a direct measurement of the value ofa. This pro-

vides a much more convenient measure ofa than computing
the summation forI2 in Eq. (36), as was done in Sec. II G.

Figure 13 shows a comparison of the theoretical values of
Ctshtd, obtained with the numerical value ofa=0.323 from
Sec. II G, with numerical values. We can see from Fig. 13
that Eq.(56) correctly predicts the form ofCtshtd although it
does underestimate the correlation fort=4. One possible ex-
planation of this slight deviation is that in the analysis above
we have assumed thata is a constant. However, the value of
a depends very sensitively on the form ofPi;t. Therefore
fluctuations in the gene value distribution of the agents could
cause significant fluctuations ina. Markovian analysis of the
l =0.5 case confirms thatCtshtd=0 for t.1, in agreement
with the numerical results of Sec. II I 1.

J. Summary of memory characteristics

We conclude from the results presented in this section that
the genetic model performs better in the absence of memory.
By this we mean that the average total number of points
scored per time step whenht=+1∀ t is twice that whenht is
determined by the global memory. This was established
semianalytically in Sec. II C and supporting numerical data
were presented in Sec. II E. We showed in Sec. II C 3 that
the reason for this reduction in the performance in the pres-
ence of memory is that the agents cannot directly control the
distribution of values fornt

+1 as they can in the memoryless
model, becausent

+1 is now also a function ofht. In Sec. II F
we presented numerical data to show that the values ofknt

+1lt

andssnt
+1,td can be reproduced if the predictionht is taken

from an exogenous source providing that the value ofkhtlt is
preserved. Thus, the feedback between the global action of
the agents andht is of no benefit to the population of agents.
The only function of this feedback is to regulate the value of
khtlt.

We also investigated the values observed for the time av-
erage of the predictionkhtlt as a function of the resource
level l. We showed that the values ofkhtlt= ±0.5 that obtain
in the dynamic regime oflc1, l , lc2 are due to the deviation
observed between the mean of the agent gene value distribu-
tion Psxd and the optimal value predicted by Eq.(20).

In Sec. II I we showed that the form of the autocorrelation
function of thent

+1 time series atl Þ0.5 occurs as a result of
the cycles in state space performed by the memory. Finally,
we demonstrated that the two-step autocorrelation of the pre-
dictionC2shtd can be used to provide a direct measurement of
the deviation described above.

FIG. 12. Example of how to derive the values ofhtht+2 for each
of the states in the simplified state space.

FIG. 13. Comparison of the theoretical result of Eqs.(51) and
(55) with numerical results. The error bars show one standard de-
viation on the mean over an ensemble of five separate data sets.
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III. SELF-INDUCED SHOCKS IN THE GRAND
CANONICAL GENETIC MODEL

In this section we move on to consider the important prac-
tical property of self-induced shocks, otherwise known as
endogenous large changes(ELCs). Such large changes are
arguably a defining characteristic of complex systems, yet
there is no rigorous quantitative description of such events in
real-world realizations of complex systems(for examples,
see Refs.[15–22]).

A. Introduction

As we show here, the genetic model can be generalized in
a straightforward way to produce a model system that dem-
onstrates such large changes. The extent to which these large
changes are insensitive to the memory then provides a useful
tool for analyzing the microscopic causes underlying these
large changes. In particular, we introduce an extension of the
genetic model in Sec. II, in which the number(or “volume”)
of active agents is a time-dependent quantity. By analogy
with systems with variable particle number in statistical me-
chanics, we shall refer to this variant of the genetic model as
the grand canonical genetic model(GCGM). This extension
is analogous to various extensions of Challet and Zhang’s
minority game [2] with variable particle number
[15,16,21–25], generally known as the grand canonical mi-
nority game(GCMG).

One particular application might be to financial markets,
where large changes are called crashes or drawdowns. How-
ever, the genetic model does not directly yield a price time
series. Therefore, if we want to consider the effect of endog-
enous large changes on price, we must derive one from fun-
damental observables such asnt

±1. By definition the threshold
value of nt

+1=Nl corresponds to the state in which the vol-
ume of the item that is being traded which is available for
sale is equal to the demand. Therefore, the more general case
of l Þ0.5 represents a system in which the quantities in
which an item is bought and sold are not equal. The excess
demand is then given by

D = S l

1 − l
DNbuy − Nsell. s57d

If we let the action of an agentai;t=−1, +1 represent choos-
ing to buy or sell, respectively then we obtain the following
expression for the pricept+1 at timet+1 in terms of the price
at t:

pt+1 = pt +
1

l
FS l

1 − l
Dnt

−1 − nt
+1G , s58d

wherel is known as themarket depthand determines the
magnitude of the change in price caused by a unit change in
D. Different expressions for the pricept in terms of the ex-
cess demandD have been discussed in the literature(see, for
example, Refs.[26,27]). The linear expression in Eq.(58)
represents the simplest of these and is not as realistic as
expressions in higher powers ofD. Nevertheless, it is more
than adequate for the illustrative purposes for which we shall
need it. Since in all that follows the units of the pricept are
arbitrary we will takel=1.

An example of a large volume change observed in the
GCGM is given in Fig. 14. We can see that large changes
occur in the volume accompanied by large price movements.
However, the behavior of the volume in the figure is quali-
tatively different from that observed by Johnsonet al. in the
GCMG [21]. Reference[21] reported two distinct types of
behavior. For traders with a long memory the volume was
observed to be continuously fluctuating with occasional par-
ticularly large fluctuations which were not instantaneous;
much like the “drawdowns” and “drawups” discussed by
Sornette and Johansen in Ref.[28]. For traders with short
memories the volume was frequently zero with occasional
large instantaneous spikes and corresponding instantaneous
price movements. In contrast, in Fig. 14 the volume exhibits
small fluctuations and occasional instantaneous changes
which are accompanied by periods of large fluctuations in
the price. We shall see that the behavior that we observe in
these figures is typical of the behavior of the volume in the
GCGM.

B. The grand canonical genetic model

The genetic model represents an abstract model of a
population competing for a limited resource and as such it
often discussed in the context of financial markets
[3,4,8,9,12,13,29]. In such a context, however, it does not
seem realistic that the agents trade at every time step. A real
market trader would also have the option of withdrawing
from the market and returning when s/he felt confident of a
successful outcome. In order to model this extra degree of
freedom, and in keeping with the work of Johnsonet al. in
Ref. [21], we shall introduce an extension of the genetic
model in which the agents are free to opt in and out of the
game.

As in the original genetic model described in Sec. II and
Ref. [3] there areN agents participating in the model. How-
ever, unlike the original model they do not all play at each
time step. At any timet there will be two populations of
agents, an active population and an inactive one. Active
agents participate in exactly the same way as they do in the
original model. In contrast, an inactive agenti will continue
to make its choice as if it were participating; however, it will
not be considered when calculating the global action and its
score will not be updated. We can imagine that inactive
agents represent traders who do not make a trade at timet.
Instead they make a prediction of whether their best choice
would have been to follow the predictionai;t=+ht or to re-
fute it ai;t=−ht. Since such a trade isvirtual in that the trader

FIG. 14. Example of an endogenous large change of the volume
in the GCGM with accompanying price time series. Model param-
eters:N=501,m=3, r =0.2, l =0.5, andT=12.
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does not act on it, it has no effect on the market and the
trader is protected from losing, or even making, money. The
only effect of such a virtual trade is that the agent reevaluates
its confidence level depending on whether the trade would
have been successful or not. Thesevirtual tradesare analo-
gous to thevirtual pointsearned by strategies in the minority
game[2]. They allow the agents to keep track of their poten-
tial performance without in any way representing an agent’s
wealth.

These modifications necessitate some minor changes to
the basic equations of the genetic model that we introduced
in Sec. II. Let the activity of an agenti be given byzi;t. If
zi;t=0 then agenti belongs to the population of inactive
agents, and vice versa forzi;t=1. Equation(1) for the global
actionAt now becomes

At =H+ 1 nt
+1 ø lnt,

− 1 nt
+1 . lnt,

wherent = o
i

zi;t .J s59d

Inactive agents become active and active agents become in-
active according to their performance in the recent past. We
defined a model parameter known as theconfidence interval
T. An inactive agent will become active if it would have won
for T consecutive time steps; in other words, an agenti for
which zi;t=0 will activate,zi;t+1=1, if ai;t=+At for t−T,t
ø t. In the same way, an active agent will become inactive if
it loses forT consecutive time steps. In order to control the
activation and deactivation of agents we assign each agent a
quantity with we shall call its virtual pointsvi;t, in keeping
with the virtual points allocated to strategies in the minority
game. For an active agentvi;t is increased each time the
agent loses and is reset to zero if it wins. Thus, for active
agentsvi;t is the number of consecutive time steps for which
the agent has lost. For an inactive agentvi;t is increased each
time that the agent would have won and is reset to zero each
time it would have lost. The updating rules forvi;t can be
summarized as follows.

If zi;t=0,

vi;t+1 = H 0 if ai;t = − At,

vi;t + 1 if ai;t = + At.
J s60d

If zi;t=1,

vi;t+1 = Hvi;t + 1 if ai;t = − At,

0 if ai;t = + At.
J s61d

The rules for agent activation and deactivation are then, if
zi;t=0,

zi;t+1 = H0 if vi;t , T,

1 if vi;t = T;
J s62d

if zi;t=1,

zi;t+1 = H1 if vi;t , T,

0 if vi;t = T.
J s63d

The expression in Eq.(2) for the number of agents for which
ai;t=+1 becomes

nt
+1 =

1

2o
i

zi;tsai;t + 1d. s64d

In this section we shall definep̄t to be the mean gene value of
the activeagent population. Thus,p̄t is given by

p̄t =
1

nt
o

i

zi;tpi;t. s65d

Therefore, the expression in Eq.(3) for the mean number of
agents following the predictionht becomes

knt
+htl = o

i

zi;tpi;t = ntp̄t. s66d

C. Price time series

As we stated in Sec. III A the cutoff, now given bynt
+1

=ntl, in the genetic model, defined by Eq.(59), is by defini-
tion the state in which the excess demandD=0. From Eq.
(58) we can see that the price changeDp=pt−pt−1 is posi-
tive and negative fornt

+1,ntl andnt
+1.ntl, respectively. By

comparison with Eq.(59) we can see that the condition that
determines the sign of the price change at timet is the same
as that which determines the global actionAt; with the ex-
ception that the equality in Eq.(59) gives a price change of
zero. With reference to Eq.(6) we have the condition that
Dpù0 in terms ofnt

+ht:

nt
+ht ù nts1 − ld if ht = − 1,

nt
+ht ø ntl if ht = + 1.

s67d

From this it follows that the probabilityPfDpù0g that the
price rises or remains the same at timet is given by

PfDp ù 0g = HI2 if ht = − 1,

I1 if ht = + 1,
s68d

whereI1 andI2 represent the summations defined by Eq.(36)
with the substitutionN→nt. We can see from Eqs.(40) and
(68) that for l ,0.5 PfDpù0g=0 for ht=+1 and for
l .0.5 PfDpù0g=1 for ht=−1. The result of this is that, in
the dynamic regime of the original GCGM with memory, one
of the values thatht can take will cause the price to rise or
fall with probability P=1. Note that in the cases of
l ,0.5,ht=−1 and l .0.5,ht=+1 we do not expect that
PfDpù0g=0.5, as might be expected. Recall that, as we
discussed in Sec. II G,p̄t deviates from the optimum values
given in Eq.(16) in the genetic model. Furthermore, because
the GCGM is frequently perturbed by ELCs it does not settle
into equilibrium in the same way as the genetic model and so
p̄t is more variable although, as we shall see, it does remain
close to the values given by Eq.(16) in the periods between
ELCs.
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D. Endogenous large changes in the GCGM

As we shall see the behavior of the model in this regime is
rich and complex. For this reason we shall initially consider
a simplified memoryless variant of the GCGM which is
analogous to the memoryless genetic model considered in
Sec. II. Subsequently we shall consider how the inclusion of
memory affects the behavior of the full GCGM.

ELCs in the GCGM result from a combination of two
factors, both of which must be present if a large change is to
occur. We shall see later that the capacity of the model to
undergo an ELC depends sensitively on the distribution of
gene valuesPspd. However, a suitablePspd is not a sufficient
condition for an ELC to occur. It is also necessary for a
particular pattern to occur in the global action time series.
We can think of this pattern as atrigger that initiates the
ELC, but only if Pspd is in a susceptible state. Furthermore,
we shall see that the natural evolution of the model causes
Pspd to evolve toward the most susceptible state while ELCs
move Pspd toward the state in which it is least susceptible.
Thus, rather than settling into equilibrium like the original
genetic model, the evolution of the GCGM is characterized
by a cyclic behavior:Pspd periodically evolving toward a
more susceptible state until its progress is reversed by an
ELC.

1. Susceptibility of P„p…

ELCs like the one illustrated in Fig. 14 are the result of
highly correlated behavior of the agents. By this we mean
that a significant number of agents activate or deactivate at
the same time step. This implies highly correlated behavior
since in order to do so the actions of all of the agents in-
volved must be identical for theT preceding time steps. It is
initially surprising that such a high degree of correlation
could arise in the GCGM because, unlike minority game
agents, GCGM agents make their decisions stochastically.
The probability of coincidence between the actions of a large
group of agents will usually be very small. However, there
are two groups of agents in the model whose behavior is well
correlated. These two groups are those agents whose gene
values lie within a certain small ranged of 0 and 1. We shall
call agents belonging to these groupszero agentsand one
agentsrespectively. The degree of correlation of these agents
is a decreasing function ofd, being a maximum ford=0. It is
easy to show that if we set an upper limit on the fractionfd
of zero and one agents whose actions are not perfectly cor-
related over a period ofT time steps,d is given by

d = 1 − s1 − fdd1/T. s69d

The precise value chosen ford is not important since it
serves only to give a measure of the population of zero and
one agents. Therefore it is more convenient to choose a fixed
value ford which gives rise to values offd that lie within an
acceptable range, rather than choosing a differentd for each
value of T. In all that follows we shall taked=0.02 which
gives fd,0.33 forTø20.

In short, we see that the probability of highly correlated
agent behavior increases rapidly as the number of zero and
one agents increases. Thus, gene value distribution functions

Pspd which are biased to favor agents with gene values near
p=0.0 andp=1.0 will be the most susceptible to ELCs.

Now that we have considered what forms ofPspd are
most susceptible we will discuss howPspd evolves in the
GCGM. In the periods between the ELCs the number of
active agentsnt given by Eq.(59) is a slowly varying func-
tion of time. As we remarked above, correlations between the
behavior of large numbers of agents are expected to be rare,
and sont will fluctuate slowly with time as individual agents
activate and deactivate. Hence the results of Refs.[4,13] can
be applied to the GCGM in these periods. References[4,13]
describe how in the genetic model the agents self-segregate
into two populations having low and high gene values—
these two populations can be thought of as a “crowd” and an
“anticrowd”. Thus, although we have yet to consider what
the effect of an ELC will be onPspd, we can see that after
such an eventPspd will evolve continuously toward the ex-
tremized distribution described by Ref.[13]. From our dis-
cussion above we know that it is this type of extremized gene
value distribution that is most susceptible to ELCs.

2. Triggers in the global action time series

We saw above that it is only the zero and one agents that
can participate in the highly correlated behavior necessary
for an ELC. Therefore, in order to think about what patterns
in the global action time series might induce an ELC it is
necessary to consider these agents. If at time stept At=+ht
then each zero agent will lose while each one agent will win.
If At=+ht for T consecutive time steps then immediately fol-
lowing the Tth time step a fraction 1−fd of the active zero
agents will deactivate while the same fraction of the inactive
one agents will activate. Similarly, ifAt=−ht for T time steps
then a fraction 1−fd of the inactive zero agents will activate
and a fraction 1−fd of the active one agents will deactivate.
Thus we can see that sequences of time steps in whichAt
=+ht or At=−ht for T time steps will be important for the
correlated agent activations and deactivations that make up
an ELC.

Since such sequences are important in the occurrence of
ELCs it would be useful to have an expression for the prob-
ability that they will occur. The first step is to derive expres-
sions for the probability thatAt=±ht. We shall see later that
these expressions are important in their own right. From Eq.
(6), substitutingnt for N, and the definition ofPi;t we have
the following expressions for the probability thatAt=±ht:

PfAt = − htg =5 o
i=s1−ldnt

nt

Pi;t if ht = − 1,

o
i=lnt+1

nt

Pi;t if ht = + 1,6
PfAt = + htg =5 o

i=0

s1−ldnt−1

Pi;t if ht = − 1,

o
i=0

lnt

Pi;t if ht = + 1.6 s70d

We shall see later thatnt@1. Therefore we can use the con-
tinuous approximation ofPtsxd for Pi;t. As demonstrated in
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Ref. [12], Ptsxd will be a Gaussian. In the GCGM only ac-
tive agents contribute to the meanm and variances2 of
Ptsxd. Therefore

Psxd =
1

sÎ2p
expF−

1

2
Sx − m

s
D2G , s71d

where

m = ntp̄t, s2 = o
i

zi;tpi;ts1 − pi;td. s72d

In the continuous approximation we have

PfAt = − htg < 5Es1−ldnt−1/2

+`

Ptsxddx if ht = − 1,

E
lnt+1/2

+`

Ptsxddx if ht = + 1,6
PfAt = + htg < 5E−`

s1−ldnt−1/2

Ptsxddx if ht = − 1,

E
−`

lnt+1/2

Ptsxddx if ht = + 1,6
s73d

where we have used the fact that sinces is of order unity the
integrands in Eq.(73) will approximately vanish forx,0
andx.nt. This has allowed us to replace lower limits of 0
with −` and upper limits ofnt with +`.

Finally we can express Eq.(73) in terms of erf functions
as, forht= ±1,

PfAt = − htg <
1

2
31 7 erf1 1

2
7 ntlt

±

sÎ2
24 ,

PfAt = + htg <
1

2
31 ± erf1 1

2
7 ntlt

±

sÎ2
24 , s74d

where for convenience we have definedlt
± as follows:

lt
− = p̄t − s1 − ld, lt

+ = p̄t − l . s75d

The erf function is defined as

erfsxd =
2

Îp
E

0

x

e−t2dt. s76d

We can see from Eq.(74) that the expressions for the
probability thatAt=±ht depend upon the values taken byht.
For this reason it will not be possible in general to derive a
simple expression for the probability thatAt=±ht for T con-
secutive time steps. Such an expression would depend upon
the realization of the prediction time series during the spe-
cific T time steps under consideration. In the next section,
however, we shall see that a simple expression can be de-
rived in the case of the memoryless model.

Reference[30] presented an analysis of crashes in finan-
cial markets such as the one that occurred on the NASDAQ
in April 2000. The authors propose that such crashes result
from speculative bubbles in which large numbers of traders
share the same unrealistic expectations of the future perfor-
mance of the companies in question. These bubbles eventu-
ally burst, apparently in response to some event which acts
as a trigger. We can draw a broad qualitative analogy be-
tween this and the GCGM. The extremized gene value dis-
tribution discussed in Sec. III D 1 corresponds to a state of
the model in which large numbers of agents share the same
unrealistic expectation that the global action will be equal to
or the opposite of the prediction. It is thisspeculativedistri-
bution that is most susceptible to triggers that occur from
time to time in the global action time series.

E. ELCs in the memoryless GCGM

We form the memoryless GCGM from the full model de-
scribed in Sec. III B by takinght=+1∀ t in exactly the same
way as we did in Sec. II. Our discussion of the susceptibility
of the gene value distribution functionPspd in Sec. III D 1
applies equally to the memoryless and the full GCGM. The
equivalent of the patterns ofT time steps in whichAt=−ht or
At=+ht are those in whichAt=−1 or At=+1. In the memo-
ryless case, the expressions in Eq.(74) become

PfAt = ± 1g <
1

2
31 ± erf1 1

2
− ntlt

+

sÎ2
24 . s77d

This expression is no longer dependent onht, since ht
=+1∀ t. Therefore, in the case of the memoryless GCGM,
we can derive the following simple expression for the prob-
ability Lt that At=±1 for T consecutive time steps:

Lt =
1

2T31 − erf1 1

2
− ntlt

+

sÎ2
24

T

+
1

2T31 + erf1 1

2
− ntlt

+

sÎ2
24

T

.

s78d

Figure 15 showsLt given by Eq.(78) and the average wait-
ing time, given byLt

−1.
There are a couple of points to notice in Fig. 15. First of

all the minimum ofLt does not occur atlt
+=0 but at a value

of lt
+=1/2nt. This results from the fact that in the case of

nt
+1= lnt our model tie breaks by declaring the global action

At=+1. The most obvious feature of Fig. 15 is thatLt in-
creases rapidly with increasinglt

+. This means that the prob-
ability of a trigger sequence occurring in the global action
time seriesAt increases with the deviation ofp̄t from l.
Therefore we can consider the value oflt

+ to be controlling
the probability that a trigger sequence will occur. Further-
more, note thatLt never vanishes and so the average waiting
time never goes to infinity. Crucially, this means that regard-
less of the value ofp̄t there is always a nonzero probability
that a trigger sequence will occur.
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1. Price time series in the memoryless GCGM

One of the advantages of the memoryless GCGM is that
the dynamics of the price time series are particularly simple.
We saw in Sec. III C that the probability of a price fall at
time t is given by the same condition that the global action
At=−1. Therefore,PfDp,0g=PfAt=−1g given by Eq.(77).
Thus the price will fall with probabilityP,0.5 if lt

+,0 and
with probability P.0.5 if lt

+.0.

2. Example ELC

Now that we have introduced the memoryless GCGM we
shall consider a specific example of an ELC. This will allow
us to see how the elements discussed in Sec. III D are in-
volved in ELCs in the GCGM. In order to do this, however,
we need to introduce one further quantity which we shall call
the prediction performanceand denote byht. At time stept
the value ofht gives the number of previous consecutive
time steps at which the prediction was the same as the global
action At=+ht. In the memoryless GCGM the value ofht
gives the number of consecutive time steps precedingt at
which At=+1. The reason thatht is useful is that during one
of the so-called trigger sequences that we discussed in Sec.
III D 2 ht will become large and, thus, it can be used to
identify these events.

Figure 16 shows the values of the global actionAt and the
prediction performanceht for a period of time in which an
ELC occurs in the memoryless GCGM withl =0.4 andT
=12. In order to show the behavior of the one and zero
agents that we discussed in Sec. III D 1 we have also in-
cluded the virtual pointsvi;t of an agenti which is inactive
and haspi;t=1.0 at the beginning of the time period shown.
Since the actions of zero and one agents are anticorrelated
(as we saw in Sec. III D 1) the virtual points of inactive one
agents and active zero agents will always be the same. The
same applies to the virtual points of active one and inactive
zero agents. For this reason it is necessary to givevi;t for
only one of these four groups in Fig. 16 since from this we
can infer the virtual points of the others. Figure 16(b) also
shows the probabilityPfAt=−1g that the global actionAt

=−1 at each time step, given in terms oflt
+ by Eq. (77).

Figure 16(c) shows the deviation ofp̄t from l, lt
+, over the

same time period. The quantities depicted in the figure are
those that play an important role in the mechanism that
causes ELCs. Later, in Fig. 18, we shall demonstrate what
effect the ELC described here has on externalobservables
such as the price and the volume. In the following para-
graphs we describe the significant features in Fig. 16. The
paragraphs labeleda–e correspond to the identically labeled
time intervals in the figure.

a. This sequence ofT time steps in whichAt=+1 provides
the trigger sequence discussed in Sec. III D 2. At each time
step during this period the virtual pointsvi;t of the inactive
one agents and active zero agents increases. When the model
reaches the final time step in this periodvi;t=T=12 for both
inactive one agents and active zero agents. The inactive one
agents will then activate while the active zero agents will
deactivate. The virtual points of these agents will then be
reset to 0. Unless the numbers of one agents activating and
zero agents deactivating are approximately equal, this corre-
lated behavior will lead to a step change in the volume like
the one depicted in Fig. 14. Only active agents contribute to
p̄t [see Eq.(65)] and so this instantaneous loss of zero agents
and gain of one agents causesp̄t, and thereforelt

+, to un-
dergo a step increase. We can see this clearly in Fig. 16(c).

b. Throughout the period ofT time steps labeledb lt
+

<0.16. Equation(77) gives PfAt=−1g in terms oflt
+. The

mean values ofnt andst over the time period described by
Fig. 16 aren̄t=205 ands̄t=4.9. By substituting these values
into Eq. (77) we can see that forlt

+,−0.05 andlt
+.0.05

PfAt=−1g<0 and 1, respectively. Therefore, if the magni-
tude of lt

+ exceeds 0.05 the model becomes quasidetermin-
istic at time stept. Thus, for the period labeledb, At=−1.
The effect of this on the zero and one agents is exactly the
opposite of that of perioda; the virtual points of the inactive
zero agents and the active one agents now increase at each
time step. Once againvi;t=T=12 for both these populations
at the end of periodb and so the inactive zero agents activate
while the active one agents deactivate. Note that the inactive
zero agents activating at the end of periodb are not just those

FIG. 15. The probability of occurrenceLt and the average wait-
ing time Lt

−1 for a pattern ofT consecutive times steps in which
At=+1 or −1. In both cases results are given forT=5 and 12(given
by the numbers in parentheses). We have takennt=205 andst

=4.9 which correspond to their mean values over the period de-
scribed by Fig. 16 below. Note that, in the case ofT=12, the right
hand axis is scaled by a factor 10−2.

FIG. 16. An example of an ELC in thememorylessGCGM with
N=500, l =0.4, T=12, r =0.2, andm=3. (a) The global actionAt

and the virtual pointsvi;t of an agenti which initially is inactive and
has a gene value ofpi;t=1.0.(b) The prediction performanceht and
the probabilityPfAt=−1g that the global action is −1.(c) The de-
viation of p̄t from l, lt

+.
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that deactivated at the end of perioda. Any zero agents that
were inactive at the start of perioda would have been unaf-
fected by the trigger sequence; however they now activate
along with those that previously deactivated. The result of
this is thatlt

+ does not return to the value oflt
+<0.4 that it

had at the end of perioda. That would have returned the
model to its nondeterministic state. Instead, however,lt

+<
−0.06 and so at the start of periodc PfAt=−1g=0.

c. This period ofT time steps in whichAt=+1 is identical
to perioda in terms of its effect on the one and zero agents.
Thus, at the end of periodc the inactive one agents reactivate
and the active zero agents deactivate, resulting in the same
step increase inlt

+ that we observed before. The important
difference between periodsa andc is that the first occurred
stochastically(there was a significant nonzero probability
that At=±1 at each time step) whereas periodc occurs
quasideterministically(the probability thatAt=+1 for theT
time steps in periodc is P<1).

d. Similarly, periodd is identical to periodb except that at
the endlt

+=−0.03. Once again from Eq.(77) we can see that
this givesPfAt=−1g.0.

e. PfAt=−1g is no longer<0 and so the model returns to
its usual stochastic behavior,At taking values −1 and +1
probabilistically. This represents the end of the ELCs since
there is now no mechanism for the synchronized activation
and deactivation that occurs during periodsa–d. The model
now returns slowly to theequilibrium state, in other words,
the state that it is in once transients due to any ELCs have
died away.

From the analysis that we have presented above we might
have expected that the periodic synchronized activations and
deactivations that we described above would continue indefi-
nitely and that the model would never return to the stochastic
state. One question that we did not address above, however,
is that of how the model manages to break out of the deter-
ministic behavior that it exhibits during the ELC. We have
considered the effect of a period ofT time steps in which
At=±1 on the zero and one agents in terms of agents activa-
tion and deactivation. However, we have not considered
agent mutation. We shall see in what follows that it is agent
mutation that allows the model to return to the stochastic
state. During periodsb–d the one agents are active only at
time steps at whichAt=−1 and the zero agents are active
only whenAt=+1. Because of this the scores of zero and one
agents are decreasing functions of time. Their scores are
fixed when they are inactive and when they are active their
individual actions are the inverse of the global action:ai;t
=−At. While these agents are inactive the model is favorable
to them and so afterT time steps they reactive. However,
because the behavior of all these agents is so highly corre-
lated, in doing so they change the dynamic of the model so
that it is no longer favorable. This has a clear analogy with
the phenomenon ofmarket impactin economic systems.

Since the scores of the zero and one agents are decreasing
functions of time during the ELC, the scores of these agents
will rapidly reach the death scoresi;t=−D at which they mu-
tate. If r @d=0.02 [defined by Eq.(69)] then with a very
high probability ofsr −dd / r a mutating zero or one agent will
mutate to a gene value ofpi;t.d or pi;t,1−d, respectively.

The result of this is that the population of zero and one
agents that participate in the synchronized activations and
deactivations steadily decreases throughout the ELC. Even-
tually there are no longer enough of these agents to maintain
lt

+ at a magnitude greater than 0.05 and soPfAt=−1gÞ0 or
1. The model then returns to the stochastic state.

Note that the example depicted in this section does to
some extent represent an idealized case. It is not guaranteed
that the oscillations inlt

+ are of a sufficiently large magni-
tude thatPfAt=−1g, given by Eq.(77), takes only values<0
and <1. Therefore, some of the periods ofT time steps in
which At is consistently −1 or +1 will not occur determinis-
tically. For this reason short interjected periods in whichAt is
not consistent can occur between such periods asa to d in
Fig. 16. The occurrence of ELCs in the model is robust
against such stochastic fluctuations. However, during such an
interjected time period agent mutation will act to bringlt

+

closer to 0.0. Therefore the longer such a period is the lower
the probability that the ELC will continue.

3. Summary of ELCs in the memoryless GCGM

In this section we shall bring together the elements that
we have introduced so far in order to give a broad overview
of ELCs in the memoryless model. We demonstrated in Sec.
III D 1 that in what we now call the stochastic state the
agents migrate toward gene valuesp=0.0 andp=1.0. There-
fore, while the model is in the stochastic state the number of
zero and one agents increases. This increases the susceptibil-
ity of the gene value distributionPspd to any trigger se-
quences that might occur and also increases the duration of
the next ELC. If a trigger sequence occurs in the evolution of
the model then if there are enough zero and one agents an
ELC will take place as described in the previous section. One
of the effects of the ELC is to reduce the numbers of zero
and one agents. This decreases the probability of a subse-
quent ELC occurring.

In order to make this clear we show in Fig. 17(b) the
numbers of zero and one agents during the time period lead-
ing up to and after that depicted in Fig. 16. Figure 17(a)

FIG. 17. (a) The evolution of the numbers of agents for which
pi;t,d (zero agents) andpi;t.1−d (one agents) over a time period
that includes that depicted in Fig. 16.(b) lt

+ over the same time
period. The occurrence of ELCs is indicated by spikes in thelt

+

time series. The first ELC identifiable is that depicted in Fig. 16.
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shows lt
+ over the same time period. As we saw in Sec.

III E 2, ELCs can be identified by the spikes that occur in the
lt

+ time series. We can see in Fig. 17 that, while the ELC that
we examined in Sec. III E 2 causes a large decrease in the
numbers of zero and one agents, significant numbers remain
and so the initial ELC is followed by several smaller ones.
The most important feature of Fig. 17 to notice, however, is
that sudden decreases in the numbers of zero and one agents
that occur at each ELC and the steady increase that these
quantities exhibit in the periods between ELC.

So far, in order to understand the mechanism that leads to
ELCs, we have concentrated on quantities that are internal to
the model. In the economic analogy these would correspond
to quantities whose values would be extremely hard to quan-
tify, for example, the confidence of, or strategies adopted by,
traders. However, as we remarked in Sec. III A, ELCs in the
GCGM also affect quantities that are directly observable and
quantifiable such as thevolumeand theprice. We have plot-
ted in Fig. 18 the volume and the price over the same time
period described by Fig. 16. We can see from Fig. 18 that the
oscillatory activation and deactivation of the zero and one
agents that we described in Sec. III E 2 leads to correspond-
ing oscillations in the volume. Note that the oscillatory na-
ture of ELCs will lead tovolatility clusteringsince each ELC
contributes several large changes in the volume.

We saw in Sec. III E 1 that the probability that the price
falls at time t PfDpt,0g is equal toPfAt=−1g which is in
turn given in terms oflt

+ by Eq.(77). Thus, we can see from
the plot ofPfAt=−1g in Fig. 16(a) that the oscillations inlt

+

will give rise to alternate periods in which the price rises and
falls, as we see in Fig. 18. In terms oflt

+ the ensemble
average excess demand is given by:

kDl = −
ntlt

+

1 − l
. s79d

Thus we can see that the magnitude of the price change at
each time step is proportional tontult

+u. Therefore, the overall
fall in price depicted in Fig. 18 is due to the fact that the
magnitude of the positive excursions oflt

+ during the ELC
exceeds that of the negative excursions.

F. ELCs in the full GCGM: An idealized case

Before we examine some examples of numerically ob-
served ELCs in the full GCGM we shall consider a theoreti-
cally idealized case. In this section we will assume that in
equilibrium kp̄tlt is equal to the optimal valuep̄t,opt given by
Eq. (16) of 1−l for l ,0.5 andl for l .0.5. During the ELC

we will assume thatp̄t oscillates between values that are
greater and less than the equilibrium value by a magnitude
greater thanst /nt but less thanu2p̄t ,opt−1u such thatPfAt

=−htg, given by Eq.(74), takes only the values 0 and 1. This
yields the following values forPfAt=−htg.

For l ,0.5,

p̄t , p̄t,opt: PfAt = − htg = H0 if ht = − 1,

1 if ht = + 1,
J

p̄t . p̄t,opt: PfAt = − htg = H1 if ht = − 1,

1 if ht = + 1.
J s80d

For l .0.5,

p̄t , p̄t,opt: PfAt = − htg = H1 if ht = − 1,

0 if ht = + 1,
J

p̄t . p̄t,opt: PfAt = − htg = H1 if ht = − 1,

1 if ht = + 1.
J s81d

As we saw in Sec. III D 2 it is sequences ofT time steps in
which At=−ht or At=+ht which act as the triggers for ELCs
in the full GCGM. We can see from Eqs.(80) and (81) that
At=−ht with probability P=1 when p̄t. p̄t,opt. Thus,
p̄t. p̄t,opt leads to the sequences of time steps which have the
same effect on the zero and one agents as the sequences of
time steps in whichAt=−1 that we saw in the memoryless
GCGM. The situation whenp̄t, p̄t,opt is more complicated.
We can see from the above expressions that, forl ,0.5, At
=−1 while, for l .0.5,At=+1. Thus, forp̄t, p̄t,opt we expect
sequences of time steps in whichAt=−1 andAt=+1, respec-
tively. However, it is not immediately apparent thatAt=+ht
as we might expect.

By application of the same Markovian analysis that we
used in Sec. II I 2 to them=1 case, we can derive the state
transition diagrams given in Fig. 19. The state labels are as
defined by Fig. 9. We can see from Fig. 19 that when
p̄t, p̄t,opt the transition diagrams each contain two attractor
states in whichht=−1 and +1 forl ,0.5 andl .0.5, respec-
tively. Thus, when the model is in these statesPfAt=−htg
=0 and thereforeAt=+ht. The reason that they can be di-
vided into two congruent subdiagrams is that in each case, as

FIG. 18. Evolution of the number of active agentsnt (also know
as thevolume) and the pricept [defined by Eq.(58)] over the same
time period described by Fig. 16.

FIG. 19. Markovian transition diagrams for ELCs in the full
GCGM. The state labels are as defined by Fig. 9 and6 signs give
the value ofht in each state.
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we remarked above,At takes only a single value. Therefore,
the value of the memory bit that corresponds to the opposite
value of At has no significance. This leads to the twofold
state degeneracy that we observe; states that differ only in
the value of this attribute are equivalent. Another feature to
note in Fig. 19 is that, depending on the state that the model
is in when it changes fromp̄t. p̄t,opt to p̄t, p̄t,opt, it may
take several time steps to reach the attractor. Thus, unlike in
the case of the memoryless GCGM, we should not expect
oscillations with periodT. There will likely be interjected
time steps while the model finds the attractor.

We can see that this analysis will apply to the case of
generalm by considering Eq.(80). For p̄t, p̄t,opt, At=−1 or
+1 consistently. At the first time step after the activation and
deactivation of one and zero agents the history will contain a
mixture of −1’s and +1’s. However, it is clear that afterm
+1 time steps it will contain only −1’s and +1’s forl ,0.5
and l .0.5, respectively, and the memory bit corresponding
to this history will also take the same value. These states in
which the history ish−1,−1, . . . ,−1j and ht=−1 or h+1,
+1, . . . , +1j andht=+1 correspond to the attractor states in
Fig. 19.

1. Example ELC

Now we shall look at a numerical example. Figure 20
gives the values of the global actionAt, the predictionht, the
prediction performanceht, lt

+ and PfAt=−htg given by Eq.
(74). Once again we have also included the virtual pointsvi;t
of an agenti which is inactive and haspi;t=1.0 at the begin-
ning of the time period shown. Figure 20 is equivalent to Fig.
16 except that we have additionally included the value of the
predictionht. Note that in Fig. 20(c) the dotted lines indicate
lt

+= p̄t,opt andlt
+=1−p̄t,opt which, in this case, correspond to

lt
+=0 and lt

−=0, respectively. The paragraph labels below
correspond to the labels in Fig. 20(b).

a. Period a, in which At=+ht, provides the trigger that
causes the activation and deactivation of zero and one
agents.

b,c. The(de) activation that is the result ofa causes a step
increase inlt

+ as we expect. However, the magnitude oflt
+

during b and c is not sufficiently large thatPfAt=−htg=1
whenht=+1. In fact, as we see from Fig. 20(b), PfAt=−htg
<0.9 whenht=+1. Thus we can see that in this regard the
realization of an ELC described here is not ideal in the sense
discussed in the previous section. It is becausePfAt=−htg
Þ1 that for the second time step ofb At=+ht resulting in
these two interjected time steps. Throughout periodc At
=−ht as expected.

d,e, f. The interjected periodd corresponds to the model
finding one of the attractor states in whichAt
=+ht. During periode, At=+ht once again. However, after
the reactivation and deactivation at the end ofe lt

+<0.
Therefore, by chanceAt=+ht for the next three time steps as
well, resulting in the interjected periodf. This extra long
period in whichAt=+ht allows some zero and one agents
who had failed to(de)activate during theT time stepse to do
so. Thus,lt

+ increases and so therefore doesPfAt=−htg (for
h=+1).

g,h, i. During g, At=−ht despite the fact thatPfAt=−htg
<0.7 (for h=+1). h once again corresponds the model find-
ing the attractor state.i represents the final period in which
At=+ht before lt

+ returns to approximately the equilibrium
value and the ELC comes to an end.

Note that the periods likec andg, in which the magnitude
of lt

+ is not sufficiently large thatPfAt=−htg=1 when ht

=+1, but in which neverthelessAt=−ht for T or more time
steps, occur with a much greater probability than they do in
the memoryless model. The reason for this is thatPfAt

=−htg=1 whenht=−1, unless the magnitude of the oscilla-
tions in p̄t is so great thatlt

−<0. Therefore, for any time
steps during periods likec and g for which ht=−1, At=−ht
with probability P=1. We can see this clearly in the plot of
PfAt=−htg in Fig. 20(b).

In Fig. 21 we show once again the volument and the price
pt over the same period described by Fig. 20. We can clearly
see the effect of the discussion in Sec. III C. Each time that
ht=−1 the price rises with probabilityP=1. Furthermore, the
result of the deviation of the equilibrium value ofp̄t from
p̄t,opt (see Sec. II G) is that it is more probable that the price
will rise rather than fall whenht=+1. These two effects en-
sure that in equilibrium(between ELCs) the pricept is an
increasing function of time. We can see in Fig. 21 that one of
the effects of the ELC described in this section is to halt and
even briefly reverse this continuous price rise.

The fundamental reason for this behavior is that, as we
remarked in Sec. II, the agents in the GCGM are unable to

FIG. 20. An example of an ELC in thefull GCGM with N
=500, l =0.6,T=12, r =0.2, andm=3. (a) The global actionAt and
the virtual pointsvi;t of an agenti which initially is inactive and has
a gene value ofpi;t=1.0. (b) The prediction performanceht and the
probability PfAt=−htg that the global action is −ht. (c) The devia-
tion of p̄t from l, lt

+, and the predictionht.

FIG. 21. Evolution of the number of active agentsnt (also
known as the volume) and the pricept [defined by Eq.(58)] over
the same time period described by Fig. 20.
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control directly whether they will buy or sell at each time
step. They can control only the probability with which they
will follow the predictionht. As we saw in Sec. II the opti-
mum behavior for the agents is to evolve such that the excess
demand will be zero whenht takes its most common value
(ht=+1 in the case ofl .0.5). Therefore, in the asymmetric
case ofl Þ0.5, the magnitude of the excess demandD will be
large whenht takes the opposite value. This represents the
agents mistakenly believing the prediction, which in turn
leads to an excess of buyers or sellers forl ,0.5 andl .0.5,
respectively.

Johansen and Sornette have provided evidence[28,30]
that large price changes in financial markets areoutliers. By
this it is meant that the frequency with which large price
changes occur cannot be predicted using the distribution of
smaller price changes. From the results presented in this sec-
tion, we can see that the large changes that occur in the
volume during ELCs are also outliers in this sense. The dis-
tribution of volume changes between ELCs is such that
changes of the magnitude observed during an ELC occur
with a very small probability. As we saw in Sec. III D a
different mechanism[i.e., that of the susceptibility ofPspd
and the occurrence of triggers inAt] is responsible for the
occurrence of ELCs, which therefore occur with a much
greater probability.

G. ELC duration distribution

Finally in this section, we shall take a brief look at the
distribution function of the durationDt of ELC. Numerical
simulations using the memoryless model suggest that the dis-
tribution function is of the form of a Gaussian. Figure 22
shows this distribution function in the full GCGM as well as
straight line fits forDt'60. The figure suggests that, while
short ELCs may follow a Gaussian duration distribution,
longer changes are better fitted by an inverse power law.

Bak, Tang, and Wiesenfeld[31,32] introduced the theory
of self-organized criticality which seeks to explain the occur-
rence of inverse power law distributions in nature. Reference
[32] describes two- and higher dimensional systems, which
are shown to self-organize to a critical point where the dis-
tribution of the magnitude and duration ofshocks(called

avalanches in Ref.[32]) follows an inverse power law with
exponent<−1.

If the duration distribution were found to display power
law behavior, this might indicate that the theory of self-
organized criticality was applicable to the GCGM. However,
the measured exponents of −4.2 and −7.2 are very different
from the value of −1 reported in Refs.[31,32]. Furthermore,
the data in Fig. 22 are not sufficient to draw such a conclu-
sion, and obtaining reliable data over a range of values ofDt
sufficient to do so is prohibitively computationally intensive.
This point requires further investigation.

H. Summary of ELC characteristics

We have seen how ELCs can occur in the GCGM as a
result of the susceptibility of the gene value distributionPspd
to triggers in the global action time seriesAt. We also saw
that between ELCs the self-segregation of the agents in-
creases the susceptibility ofPspd while this process is re-
versed during an ELC. Furthermore, we saw that an ELC in
the memoryless GCGM leads to approximately periodic os-
cillations in a derived price time series. In contrast, the price
time series in the full GCGM is a divergent quantity resulting
from the inability of the agents to controlnt

+ht directly. In
both models ELCs lead to approximately periodic volument
oscillations.

IV. CONCLUSIONS

In this section we provide a brief summary of the main
results presented in this paper. For more details we refer the
reader to Secs. II J and III H. In Sec. II C we showed that a
simplified genetic model that made no use of memory is
more efficient (for l Þ0.5) in accessing the available re-
sources than the original genetic model. Furthermore, in Sec.
II E, we demonstrated that the reason for this is that in the
memoryless model the agents can controlnt

+1 directly,
whereas in the original modelnt

+1 is also a function ofht. In
Sec. II F we showed that, ifht is generated by a random
exogenous source with an appropriate mean value, then in
terms of knt

+1lt and ssnt
+1,td the two models are indistin-

guishable. We noted that without such an external source the
two models are distinguishable in terms of these two quan-
tities for l Þ0.5.

In Secs. II G and II H we demonstrated that the values
taken bykhtlt are a direct result of the deviation ofp̄t from
the optimal value of Eq.(16), but that this does not result
from the nonzero standard deviation of the gene value distri-
bution.

Section III showed that the memory introduces nonzero
autocorrelations into theht and nt

+1 time series. Thus, forl
Þ0.5, the original and memoryless models are distinguish-
able even ifht is derived from a random exogenous source,
rather than being constant. Section III B provided a Markov-
ian analysis that showed how the autocorrelation function of
ht resulted from the cycles performed by the model in the
state space of the memory.

In Sec. III we introduced a different version of the genetic
model(GCGM) in which the number of active agents was no

FIG. 22. Numerical distribution functions for the probabilityP
of an ELC of durationDt occurring in the GCGM with memory.
The sets of data points correspond to the values ofm and N indi-
cated. The dashed lines represent inverse power law distributions
with exponents −4.2 and −7.2.
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longer fixed. Section III E provided a detailed description of
how a memoryless GCGM undergoes large self-induced
shocks and discussed the effect of such shocks on external
observables such as the volume and price. Section III F ex-
tended this discussion to the full GCGM including memory.

V. FUTURE DIRECTIONS

This paper leaves open several interesting questions that
we hope will be addressed by future work. First of all in Sec.
III we considered only the case in which the death scoreD is
less than the confidence intervalT. The result of this is that
agents mutate over a shorter time scale than the period of
oscillation of an ELC. We would expect that values ofD.T
would lead to ELCs that persisted for many more periods.

We have taken the ratio of the number of points gained by
an agent whenai;t=+At to those lost whenai;t=−At to be
unity. Hod and Nakar[8] demonstrated that for values of this
prize-to-fine ratio R,1 the self-segregation of the gene
value distribution[3] is replaced by clustering behavior in
which the agents tend to evolve towardpi;t=0.5 in equilib-
rium (see also Refs.[33,34]). We saw in Sec. III D 1 that this
clustered gene value distribution is not susceptible to the
trigger sequences that cause ELCs. Further work is required

to establish whether reducing the prize-to-fine ratio sup-
presses the occurrence of ELCs.

Most importantly, we showed in Secs. II G and II H that
for the original genetic model in equilibriump̄t deviates from
the optimal value given in Eq.(16). This apparently small
deviation is important since it determines the values taken by
khtlt and the magnitude of the autocorrelations observed in
theht time series. We have shown that since this effect is not
present in the memoryless genetic model it does not result
from the finite standard deviation of the gene value distribu-
tion, but must instead result from the action of the memory.
We hope that future work will provide clarification of this
point.

Finally, more work is required to establish to what extent,
if any, the ELC duration distribution function described in
Sec. III G represents an inverse power law and to clarify the
effect of memory on this function.
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