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Memory and self-induced shocks in an evolutionary population competing for limited resources
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We present a detailed discussion of the role played by memory, and the nature of self-induced shocks, in an
evolutionary population competing for limited resources. Our study builds on a previously introduced multi-
agent systeniPhys. Rev. Lett.82, 3360(1999] which has attracted significant attention in the literature. This
system exhibits self-segregation of the population based on the “gene”waligere O< p<1), transitions to
“frozen” populations as a function of the global resource level, and self-induced large changes which sponta-
neously arise as the dynamical system evolves. We find that the large, macroscopic self-induced shocks that
arise are controlled by microscopic changes within extreme subgroups of the popdilatiosubgroups with
“gene” valuesp~0 andp~1).
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I. INTRODUCTION In this paper we present a detailed discussion of the role

The dynamical behavior of a population of objects orOf memory in the genef[ic model. Wg also explain the origin
“agents”(e.g., software or hardware modules, cellular organ-Of the remarkable.stepllke structure in the globa! output time
isms such as bacteria or ViruseS, human beinQS, ar)ir'majs series as a function of the resource |EVE|, which was first
of interest across a range of disciplines. Physics is arguablgbserved by Johnsoet al. in Ref. [4]. We then introduce
luckier than most disciplines in that the agents of interestSec. Il) a variant of the genetic model in which the number
(i.e., particles do not adapt their behavior according to pastof agents competing at a given time step is allowed to fluc-
failure, hence evolving new sets of rules as time progressesuate. Because of the analogy with the grand canonical en-
Nor do the agents in question have any individual memorysemble in physics, we shall refer to this model as the “grand
Biological and social disciplines are not so lucky. Through acanonical genetic mode(GCGM) By considering versions
desire to develop a minimal model that could incorporateof the GCGM both with and without memory, we shall in-
such features into a manageable yet nontrivial system, Arthufestigate the endogenodse., self-induceyl large changes
introduced the so-called “El Farol” bar problem, which con-that arise in the system. These large changes represent abrupt
cerns the repeated competition between bargoers to attendhéacroscopic “shocks,” and occur with a greater probability
popular bar with limited seatinfll]. Challet and Zhan§2]  than would be expected based on random walk statistics. We
subsequently introduced a binary version of this bar problenprovide a detailed analysis of the mechanism that generates
for the case where the amount of resoufed., number of these large changes.

seat$ is just less than half the number of age(e¢sy., pos-
sible attendegs This system is referred to as the minority
game.

The minority game does not allow an agent to continu-  \/grious paperg3-5,7 have made claims with regard to
ously evolve new strategies and hence explore the entirgye role of memory in the genetic model. To date, though, no
strategy space. The minority game is also essentially detepne has performed a detailed analysis of this problem. In this
ministic, apart from occasional coin tosses which are used tgection we present such an analysis which involves compar-
break ties in strategy scores. Furthermore, the resource Ievﬁg the behavior of the original model with that of a memo-
is set at just less than half the number of agents, so that thefgless variant. The results presented here for the genetic
are always more losers than winners. To help overcome thesfiodel are reminiscent of earlier results for the minority
limitations, Johnsoret al. introduced a stochastic version of game. In particular, Harét al. [10] showed that a crowd-
the minority gam¢3], which is subsequently referred to as anticrowd theory which assumeandombhistory provides a
the genetic model, in which an agent's stratégiaracter-  quantitative description of the time-averaged fluctuations in
ized by a “gene” valup) can evolve indefinitely in time and  the minority game. Subsequently Cavagih#] demonstrated
is in principle allowed to access the entire space of strategiegumerically that the time-averaged fluctuations were indeed
(i.e., allp valuey. The resulting genetic model has provoked |argely unaffected if the global history was replaced with
much interest in the literaturdor example, see Reff4—9)). randomly generated data.

As commented in the original paper of Johnstral. [3] and Ceva and Burgos5] explicitly investigated the role of
confirmed by Burgoset al. [5,7], the self-segregation ob- memory in the genetic model; however, the results are re-
served in the genetic model is insensitive to changes in aBtricted to a comparison of the gene value distributions in the
agent's memory lengtm. minority case, in which the amount of resource is just less
than half the number of agents. In contrast, in this section we
shall treat the general case in which the amount of resource
*Electronic address: roland.kay@physics.ox.ac.uk is unrestricted, and provide some theoretical analysis to ex-

Il. EFFECTS OF MEMORY IN THE GENETIC MODEL
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TABLE I. Parameters used to generate numerical data. shall refer to the outcome as tigéobal actionat timet, A;.
Agent gene values are not constant with time. Each agent
Number of agents N=501 Memory length m=4 maintains a record of itscorg s;.;, which determines when it
Death score D=4 Mutation range  r=0.2 changes its gene value. At every time stgp,increases by
one unit ifa;..=+A; and decreases otherwise slf=-D then

the agentmutates The parameteD is known as theleath
plain the differences that we shall observe between the twgcore When an agent mutates it chooses a new gene value at
models. We shall show in Secs. Il G and Il H that the obserrandom from a range of values of width 2entered on the
vation that the gene value distributions are identical hold®ld gene value. The parameteiis known as themutation
only in the special case considered in Ré&if. Furthermore, range

we shall show that the feedback introduced by the existence There are two opposite definitions of the global actign

of memory does influence the behavior of the model in that iused in the literature. For example, R§4] definesA;, by
controls the time average of the predicti®®ec. 11 G and  analogy with Zhang and Arthur's bar model, to be the state
introduces autocorrelations into the mean attendance timef the bar at timet. Thus, A;=+1 would denote arover-
series(Sec. Ill). By comparing and contrasting the mem- crowdedbar and the optimal action of each agent would be
oryless genetic model with the original model, we shall beto stay at home(i.e. a;=-1). However, in this paper we
able to make some important observations about the meme@hall adopt the convention of RgB] wherebyA represents
ry’s true significance. We shall also answer some importanthe optimal decision of each agent at timeAs defined in
questions as to the extent to which memory is of benefit tdRef. [4], the global actiord, is given, in terms of a model

the agents and the system as a whole. parametet which can take values€9l=<1, by
Before going on to describe the genetic model, we note +1 nl<nNI
that all of the numerical results presented in this paper were A= ot (1)
obtained using the model parameters listed in Table | unless -1, nf'l> NI,
otherwise stated. Similarly, all time averages are taken over, ore
the period 10 006:t<<60 000, the first 10 000 time steps
being neglected to allow any transients due to the initial a1
conditions to die away. n-= 5(2 At N)- (2)
I

In other Words,n;rl is the number of agents for which).,
=+1. We shall refer td as theresource level
In this section we present expressions for some of the | et {p.¢ denote the set of values gf., for all agents at
m°|5tdbaSiﬁ quantities ”I‘ ”]Se ori?li%al ge“iticn m0d9_|a Whirclhtime t. As Lo et al. state[12], the ensemble average number
includes the memory. In Sec. we shall consider the i ictiom™ is qi
equivalent expressions in the memoryless variant. We sta?cf agents following the predictiofn,™ s given by
with a brief summary of the genetic model. Fuller details are L I
given in Ref.[3]. (n{™) = Np, where p,= NE Pi;t- 3
The genetic model consists of a population of agents who i=1
must decide at every time step between two possible choicqg equilibrium, where the population evolves such thats
which we will label —1 and +1. We shall refer to the decision approximately constant, the ensemble averagl) and the
of an agent as itsaction . Each agent is defined bmne time average(n{"“)t will coincide. Thus,
value g, which can take any valuesQp;,< 1. At each time
step the model makes@ediction h of the outcome of the <n:'ht>t ~ N(p). (4)
time step available to all of the agents. Each agent chooses
its action to be equal;..= +h,) or opposite(a;.,=-h,) to this
prediction with probabilityp;.; or 1—-p;., respectively.h; is
calculated based on a global memory that the model main-
tains of the outcomes of the previouostime steps and the In this section we introduce a memoryless variant of the
assumption that patterns that have occurred in the time seriesiginal genetic model. In contrast to the original model de-
of these outcomes in the past will recur in the future. Thescribed above, where the gene value ofitheagentp;; gives
parametem is known as thenemory lengthFor example, if  the probability of it choosing to follow the predictiof@;.,
m=2 then at timet the memory might contain the following =+h,), in the memoryless modej;, gives the probability
entries:(-1,-1;+1, (-1,+1;-D, (+1,-1;-1, and (+1,  thata;,=+1 directly. With this modification the predictidn
+1;+1). This signifies that the last time the outcome of two and hence the global memory that produce it become redun-
consecutive time steps was —1 the outcome of the next timdant and can be removed from consideration. The agents in
step was +1. Similarly the last time the sequence —1+1 octhis variant are memoryless, by which we mean that their
curred, it was followed by a -1. If at timethe outcome of actionsa;,; at timet are independent of the state of the model
the previous two time steps was +1 and then -1 then, in thiat earlier timesa;,; is dependent only op;.;. An equivalent
case,h;=-1. The outcome of each time step is determinedvay of considering this is to takie=+10t. The global ac-
based on the actions of all of the agents. From now on wéion A; and the number of agents attending the hﬁrare

A. Original genetic model

B. Memoryless genetic model
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FIG. 1. UY; as a function oht+hl in the original genetic model with memory. The dashed lines indidatghenh=-1, the narrow lines
U; whenh,=+1. The bold lines represent those part of the lines defindd, ltlyat are invariant undéy,— —h;. The black and white circles
represent the values of’ht at which4; is a maximum wher,=+1 and -1, respectively.

unchanged and so are given by E@b. and (2) as before. X Zn:'ht_ N if n:'htg NI,
U(n™) = 7
However, Eq.(4) becomes (n) =y 20PN i S N (7)
(e = NP (5

Whenh,=-1 andA,=+1 it will be the N—nt"ht agents who
choose to refute the prediction who will gain, and vice versa

C. Comparison of the performance of the original and for Ai=-1. Thus, forh;=-1 the above expression becomes,

memoryless models - Zn:'ht +N if n:hr =N(1-1),

+hyy —

We shall now compare the performance of the two mod- U{n™) _{ 2n:'ht_ N if n:hr <N(L-D).
els. In order to quantify performance we defidgto be the

total number of points scored by all of the agents at ttme The expressions in EqéZ) and(8) are plotted in Fig. 1. The
Therefore we are considering the performance of the systeflack and white circles represent the valuept at whichl/,
as a whole, rather than that of individual agents. If we coniS @ maximum forh=+1 andh;=-1, respectively. We shall
sider the models to be analogous to an economic system theall the value ofn{™ at whichi4, is a maximum theoptimal
the question that we are investigating becomes to what extenglue and denote it by, From Fig. 1 we can see thafft,
the agents in this system can exploit the potential wealttis given as follows.

(8

available to them as a population. Note that in R6f.Bur- For|1<0.5,
goset al. treat the memoryless genetic model in terms of a I

. . . NI+ 1 if hy=+1,
cost function given by the second momentrjf with re- nfglp = ] 9)
spect toNI. However, this cost function is symmetric in that ’ N(1-DH-1 if h=-1.
it as_sign_s an equal cost to dev_iationsnjf‘ from_NI of op- For|>0.5,
posite signs. As we shall sel, is not symmetric aboull
and hence can distinguish between positive and negative ho NI if hy=+1, 10
deviations. My, opt = N(L-1) if hy=-1. (10

1. Original genetic model The most important feature of this equation to recognize is

: . . . . that, in general, there is no unique valum{fﬂbt independent
First we shall derive expressions iy in the model with ¢+ "oy if h=+1 or —100t would such a unique solution
memory. Later we will see how these expressions are modi

o . exist.
f!ed in the abse_nce of the memory. From Et). the condi- We note in passing that sind\si:nt”+n{1 the optimal
tion thatA;=+1 is

value ofn{* in the original model is
+h =
nt<NIlif h=+1, Ny o= NI (11)

N =NL-1) if h=-1. (6) In contrast tmtfg;w the optimal value offtis independent of
t. Nevertheless, the most important quantity for the analysis

Now consider the total number of points scored by thethat we present here h{Qttin the case of the original model
agents ;. Agents for whicha;..=+A; will gain one point since, as we shall see later, it is the valuen{j?t that the
whereas agents for which..=—A; will lose. If h=+1 and agents can directly control and not thatrljii.
A:=+1 it will be then;™ agents who choose to folloly who Referencd4] demonstrated the existence of so-calied
will gain. If A;=-1, then thel\l—n{'ht agents who choose to zen regimes which exist when lies outside the region
refute h, will gain. Thus, using Eq(6), we have, forh, bounded by two critical values, which we shall label higie
=+1, andl. These regimes were describedcpgenchedoy Bur-
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FIG. 2. (Z/{t(nf'ht»t in (a) the original genetic model with memory afo) the memoryless model.

goset al.in Ref. [7]. The frozen regime obtains whércl,;  in fact depend only upon the signs of the valuestgf. The
or | >1c,. The behavior of the genetic model in these regimessignificance of this will become apparent in Sec. Il G.
is well understood4,7]; therefore we shall restrict ourselves  LetIT;,, be the probability tham:ht:i, Lo et al.[12] dem-

to a consideration of the dynamic regime. In what follows,onstrated thall; ., will be approximately Gaussian with mean

unless otherwise stated, takes values in the interval ,u:<nt+ht>:Nﬁ and standard deviationr=1=;pi(1-p;.).

|C1<| <|C2' Therefore, inequa”ties such &s.0.5 should be From Eq(15) it follows that the op“ma' from Oﬂ_[i;t will

taken as shorthand fdg, <1<0.5. o obtain if p; is as given by the following equation arck0:
Compared with the variation df;, agent mutation is a

slow process. The value df, changes on a time scale of 1-]- 1 <05
At~ 1 while agents mutate on a time scale>D. The result E,opt: N’ o (16)
of this is that we should not expect the agents to be sensitive | 1>05
to the instantaneous value of given in Egs.(7) and(8). ' e
They will be sensitive to only the time averadé),. Trans-  The term 1N results from the asymmetry of the condition in

lated to the conventions used here, Réf.found that Eqg. (1) which determineg\; in terms ofnfl. Forl <l in the
case ofN>1 considered here N<1-| and so we can ne-
(h), = {* 0.5 1>0.5, (12) glect this term.o=0 if {p;.4}; contains only the values 0 and

-0.5 I <0.5. 1. Let P(x) be the distribution ofp;.}; such thatNP(x)dx is

the probability that, if an ageritis chosen at random from

Therefore, fol <0.5, h,=+1 for a fraction 0.25 of the time the set{p, J; thenx= p,,=x+dx The optimal form forP(x)

steps whereas the fraction is 0.75 fo#0.5. Thus we can

calculate the following expression f()&;{t(nt"ht)>t. Is then
Forl<0.5, ) P(X) = (1 = Py, opd OX) + Pr opi(1 —X). (17)
2nt+ht -N, nt+ht < NI, This represents a distribution that is zero everywhere except
N for peaks atx=0 andx=1, the relative heights of the peaks
U=y mM™-=, Ni<nT<N@-I), (13)  being such thap=p, . Burgoset al. [6] derived a similar
2 expression forP(x) in the case of the memoryless model
(-2n"+N, =N using their symmetric cost function.
Forl>05 It is well known [3,13,14 that in the long time limit
- wheret— < the population of agents evolves such tRéx)
2nfM - N, nt< N -1), is strongly peaked about=0 andx=1 andp; takes the value
N given by Eg.(16). Although the agents never manage to
(U = n:ht_ =, N1-h< nt+ht <NI, (14)  achieve a form such that the standard deviatkbn{ht,t) is
2 exactly zero, they do approach the optimal distribution rep-
- Zn:'ht +N, n:'hl > NI. resented by Eq.17). Thus, we can see that the population of

) o o ] agents is capable of evolving such tHat; is close to its
This expression is plotted in Fig(@. From the figure we  gptimal form and the time series of values mjf* contains

. h . .
can see that the optimal value of™ that maximizes yajues clustered around the optimal valogl, given by
(Uy(n™))y is given by Eq. (15).

+hy {N(l -)-1, 1<05, (15) 2. Memoryless genetic model

topt™ NI, | >0.5. _ _ : :
In this section we shall see how the above analysis applies
Note that, although we have assumed the values given in Ed¢p the memoryless variant of the mod@|.in the memoryless
(12) for {hy);, the values oﬁt’fg‘,)tgiven in the above equation model is given by Eq(7) above. Thus,
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2nt=N if nft<NI,

18
-2nft+ N if nft> NI (18

Une™) = {
Equation(18) is plotted in Fig. 2b). Once again the black

circle represents the value of* at whichi4, is a maximum.
From the figure we can see that the optimal valuedfis

now
L {NI 1
t,opt ™ NI

Unlike the original genetic model, this optimal value rgf*
is independent of. As before, the optimal form ofl;., will
be that for whicho=o(n’*,t)=0 andu=(n*);=Np; with p;
given by

if | <0.5,

19
if | >0.5. (19

1
[+— if1<0.5,

E,opt: (20)

I if I >0.5.

Note that, from Eqs(16) and (20), this will mean that the
gene value distributions of the agents fer 0.5 in the origi-

nal and memoryless models will not be identical, but will be

related by the transformatiofm;.¢ — {1 —p;.th-

3. Direct comparison of the models

In this section we shall compare the valuel@(nt’fg‘pt) in
the original genetic model with that M(n{"épt) in the mem-

oryless genetic model in order to establish what effect the
memory has on the performance of the model. In both the
original genetic model with memory and the memoryless

variant, the agents are rewarded based on the valugof

PHYSICAL REVIEW E 70, 056101(2004

(22)

" N(1-2)-2 if1 <0.5,
ut(nt,opt =

N2l -1) if1=0.5.

Thus the optimal value df, in the original model is exactly
half that achieved by the memoryless model. As we sug-
gested above, the reason for this is because in the original
modelnt"l is a function of botth; andIl;... The instantaneous
optimal value ofnt+ht will therefore depend olh, [see Fig. 1
and Eq.(9)]. Note that the value orﬁt”‘t that maximizes the
time averagel4(n™),, noL, given by Eq.(15), will always

be one of the instantaneous optimal values given in(&y.
Thus the agents cannot increa4dy varyingp,. They adopt
the value ofp; that is optimal for the most common value of
h;, but they must pay the penalty whiaptakes the opposite
value. In contrast, in the memoryless model the instanta-
neous optimal value orht+l in Eqg. (19) is independent of.
Thus, by evolving such thai,=p; o the agents can ensure
thatn/* is close to the optimal value at each time step.

D. Analytical expressions for(n;); and a(n;*,t)

We can use the same method that we used to derive the
expression foki(n; ™)), in Egs.(13) and(14) to obtain ex-
pressions fotn; 1), and the standard deviatier(n;*,t) of the
n'! time series. From Eq3),

(™ =Np. (23)
This leads to the following expression f(nt*l):
N(1 - if hy=-1,
rty={ NP IR (24)
Np if hy= +1.

Taking the time average in exactly the same way as in Sec.

This is because the value of the global action is determinedl C 1 in equilibrium wherep; is approximately constant

from the condition omt+1 in Eq. (1) and an agent gains or
loses one point depending on whetrgg=+A,. There is,

however, one difference between the two models that will be
extremely important in what follows. The population of

agents can controll;,, through their effect onp; and o
=VZipi(1-pip). In the memoryless moddll;, represents
the probability distribution fomt”, whereas in the original
modelII;.; represents the distribution function fnfht. The

result of this is that in the memoryless model the population
of agents can directly control the values that occur in the

yields expressions fofn; %), and((n;%)?);:

L3-2m)
+1
(N =
Z(l + 2(ppy)

if | <0.5,
(25
if | >0.5,

2
Nz(4<ﬁ>t2— 6(pp;+3) + 02 if1<0.5,

time series ofn’™* whereas in the original model they can ([N} 1%)= (26)

control only the values afi™. In the latter case;™* will also

depend on the value df; over which the agents have no

direct control.

From Egs.(13), (14), and (18) it follows that the maxi-
mum values of4, [which obtain a7, andn/3; given by
Eqgs.(15) and(19)] are, for the model with memory,

N

S(1-2)-1 if1<05,
ut(n::gtpt 1 N (21
E(2| -1) if1=0.5,

and for no memory,

2
NZ(4<E>3— 2Apr+1) +0? if1>05,

where o is the standard deviation dl;.,; introduced in Sec.
Il A, which will be of order unity. If we assume that the
agents adopt the optimal distribution in Ed7) then we can
take 0=0. We now obtain an expression for(nt”,t) as
follows:

1

3N2 2
[y 01 = [ P - [y 2= %(ﬁpt - 5) ‘o2,
(27)

Taking =0 gives
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FIG. 3. () Numerical results fo(nt”)t and a(nt”,t) as a function of the resource leveh the original genetic model. We also include
lines that represemt 5, =Nl from Eq.(11) and the analytical expressions ¥ ), anda(n;*,t) presented in Eq32). (b) (n; ) anda(n;*,1)
as a function of the resource levein the memoryless genetic model.

N \E

a(n{'l,t) = >

Pt t_E . (28)

1 ‘

Referencg4] used a mean-field approximation to derive
expressions fon/* anda(n;*,t) in terms of(hy), and(py;. In
particular,

N
23-2p)) if1<05,

(= (29
Z(l +2pyy if 1 >0.5,
N Nv3 1
o(n; 1,t)=7 @t—a‘- (30)

Note that we have substituted fdn,); in the expressions of
Ref. [4] with the values of(h), that obtain forl; <I<I
((hp;=0.75 forl <0.5 and(h;);=0.25 forl >0.5 [4]). Thus,
we can see that the expressions that we derived in 2§s.
and(28) are consistent with those obtained in Reif].

E. Numerical results

1-1 1<0.5,

| 1=05 no memory:(py;=1.

memory:{py; = {
(31

This confirms that the population of agents is capable of
evolving to achieve the optimal values pf given in Egs.
(16) and(20).

In Sec. Il D we presented expressions in E@5) and
(28)<(30) for (i), and (n;*,1). If we substitute forpy in
these equations with the optimal values from ELp), ne-
glecting the term 1M, we obtain the following analytical
equations foxn;), and a(n;*,t) for I, <I<l:

Nv3

2

1

N
(nt+1>tzz(l+2), a(nt) = >

’ . (32

In Fig. 3(a) we show these analytic expressions together with
the numerical data aanéptle from Eq.(11). We can see
that (n, . deviates from the optimal value oNI for
.2<1<0.5 and 0.5<I <, as pointed out in Ref{4]. We
now know, from Sec. Il C 3, that the reason for this is that
the population of agents can only Contlmflht directly and
not nt"l. Thus their performance is reduced by the action of
h.. We can see that fdg, <I<Ig, (n/*); instead lies on the

In this section we present numerical data which support LT T

gz:
- P
By

the analytical results that we presented in the previous sec-
tions. Referencg4] investigated the behavior @h;*), and

:

2

1
original)

memoryless)

T -1

a(nt"l,t) as a function of the resource levelFurther work
was done with regard to the memoryless genetic model and
generall by Burgoset al. in Refs.[6,7]. Figure 3a) recalls

the results of Ref[4]. We can clearly see the dynamic and
frozen regimes fol,; <1<l andl <l , | >I., respectively.

08 |
i (B . 05
;
i
06 | i
Y i Y
5 i <
05

Figure 3b) shows(nY, and o(n{*,t) in the memoryless
variant. Figure 4 show&,); as a function of in the original

and memoryless models anh); in the original model.
Equivalent results fo{py); and (hy); for the original model
were also presented in Rg#].

First of all note that in Fig. 4p,); lies to a very good
approximation on the following lines:

056101-6

FIG. 4. Numerical results fofpy);, in the original and memory-
less models, an¢hy), in the original model, as a function 6fThe
diagonal lines represent the functiofs),=1 and (p);=1-1.
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line defined by Eq(32).} In Fig. 3a) we also see that the 400 (el = Ros T T
numerical data fowr(n/,t) agree to a good approximation ~ |_____ {h¢}: - Rl'z o7 Spmmn e m e
with the expressions in Eq32). The analytic expression 300 I~ ’ :

deviates from the numerical data in the vicinitylef0.5. The

reason for this is that when we derived the expression for 200

o(ntﬂ,t) in Eqg. (28) we assumed that the agent gene value

distribution is as given by Eq.17) and soo=0. In facto 100 __ -
#+0 and neat=0.5 thes? term in Eq.(27) dominates. There-

fore o(n*,t) does not go to zero as predicted. 0 e

In Fig. 3b) we see that, as predicted by Sec. Il Qi§;"); 0 02 04 08 08 !

in the memoryless model does lie on the optimal line defined

. FIG. 5. Numerical results fofn'%), and o(n/2,t) in the memo-
by ny g, =NI for I, <1 <l,. We can also see that(n;*,t) in o, anda(n; Y

h | del i hi han in th .. Iryless model using exogenous sour@egs and Rq o for h,. The
the memoryless model is much lower than in the original g s for(n/Y), and o(n;,1) in the original model, wheré, is

model. The large value of(n*,t) in the original hmodel determined by the memorfh},=S), are included for comparison.
results from the fact thah:l is a function of bOth’l: t, de- Each pair of lines show$nt+l>t and U(ﬂ:l,t) for {ht}t given as
termined viall;., by the distribution of agent gene values indicated.

P(x), andh,. In the memoryless modei/* is a function of

P(x) only, which in equilibrium will be approximately con-  gjgnificance attached to the labeling of the statel, ofieans
stant in form. The small remaining fluctuations are due to th&nat the model behaves equivalently {o},=R...

fact that the agent population does not achieve the ideal dis- Thege results confirm that the original genetic model and
tribution of Eq.(17). We can therefore say that the memory- o memoryless genetic model with taken from an exog-

less model is efficient in accessing the available resourcesgqus source can be regarded as equivalent when considering
(nt”)t. In contrast, we shall see in Sec. Il that this does not

F. Generation of the prediction from an exogenous apply when considering higher moments.
source
In Sec. Il C we showed that the effect of the predictign G. The values of{h.),

is to reduce the agents’ performance via its eﬁectn,*)h
This being the case, we should expect that the effect of th
prediction on the model would be no different from that of . . . .

an exogenous source provided that the valughgf is pre- cally by numerical S|mu!at|on. Now we shall discuss the the-
served. In this section we shall check this by comparing thgreﬂcal reasons for their obsehrved varl]lues. . .
behavior of the original model with a different memoryless Lo [1.4] as present_ed a theory t qt predicts, using our
variant. In this variant the predictidm will be generated by conventions, the following values fghy:

So far we have treated the values(bf); that obtain for
FC1<I<0.5 and 0.5<1 <, as values to be derived empiri-

a random source, external to the model, rather than taking (_ 1 forl<lgy,

the value +11t. We shall letR , represent the output of such 1

a random exogenous source, which contains only the two -— forly <1<0.5,
values -1 and +1 and for whick is the time average, 3

(hp = \ (33

(R )=a. We represent the binary sequence generated by the 1
+ 3 for 0.5< 1 <l,

memory forh, in the original genetic model b§.

Figure 5 shows numerical results fbr;q)t in the memo-
ryless model withh, given by the exogenous sourc&s, s
and Ry The results for the original modefh,};=S, are  However, numerical simulation robustly yields values of
included for comparison. The results fir},=R, o duplicate <ht>tz_% in the dynamic regime. In what follows we briefly
those presented in Fig(ly since{h};=R, ¢ is equivalentto recall Lo's analysis with the addition of some observations
h,=+10t. In other words takingh};=R ois exactly equiva-  that explain why the numerical and analytical results differ.
lent to the memoryless model that we considered in previouslote that as we pointed out in Sec. Il C 1 the absolute values
sections. In Fig. 5 the data produced usifng=Rqs for  that obtain forh,), in the dynamic regime are not important
(nMy, ando(n{*,t) agree with those from the original model for the theory that we present here. As long(ag, <0 for
for Iy <I<lg. Forl <l andl>1, the data from the origi- |, <1<0.5 and(hy),>0 for 0.5<|<I, everything that we
nal model switch to agree with those from the memoryles$gve said aboup, o Will remain unchanged. Only the mag-
model with {h};=R,, corresponding to the value dfy);  nitude of the relative performance of the original and mem-
from the original model in these regions. Note that there isoryless genetic models depends upon the values taken by
no need to consideR o5 and R_, o The lack of physical (h),.

Lo’s analysis[14] hinges on the observation that

\+1 for 1, <.

Tl nte that +1y i ;

I_\lo_te that in factn; >F Il_es sllgh_tly clo_ser _td\l/2 than Eq.(32). (A= (o). (34)
This is due to the deviation depicted in Figapwhich we shall
discuss in Secs. II G and Il H. It is then easy to show tha&#,); is given by

056101-7
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Ll<oaNA-D) Ni Eq.(16) in the original model. As we can see from Figap
e o 5) e this changes the values of the summations in B88) as
0 jPiec :§ follows:
AR v
oy i - :
5 ¢ £ ; % . 0 ifl<0.5, 0.323 if 1 <0.5,
5 ;5 4 § l1= - 2= -
St ' S ‘ \ 4 0.677 if 1 > 0.5, 1 if1>0.5,
z [ : § (40)
o - $ § ]
A / F \ | which by Eq.(37) yields the following values foth);:
F oem £ o512 \

(41)

5900 5950 6000 6050 6100 5000 5950 6000 6050 6100

l>05 NI n:'ht Nl

(b= -0.511 if 1 <0.5,
Y7 | +0.511 if | >0.5.

_ _ o _ These figures agree much more closely with the numerically
FIG. 6. Numerical data fofl;; in (a) the original model with  observed values d@h,),=+0.5 than the values obtained in Eq.
memory and(b) the memoryless model. The numbers under the gy
curve represent the sum of the values of the data points lying on \ye can therefore see that the values(lof,=+0.5 that
either side of the cutoff indicated by the dashed line. Note thad)in - . . =
this cutoff is atn;™=NI if 1 >0.5 andn;=N(1-1) otherwise. The obtain in the dynamic regime result from the fact thpat
; X deviates slightly from the optimal value of E¢L6). In the
model parameters were as given in Table | except that0 000 b f this deviati Id indeed obtain th |
and the value of n/™ was sampled over the interval absence ot this deviation we would indeed obtain the values
2000< t < 102 000. given in Eq.(33) for ¢(hy);. We can see that the memory does
indeed have a nontrivial role to play in the genetic model.
h h The feedback between the predictigrand the global action
<At>tz<< t>t+1>(2|l_1)+ (l_TW)(mz_ 1), (35 A controls the values othy); that obtain in the dynamic

2 regimely <I<lg.
where
NI N H. Deviation of p; from its optimal value
=2y 1= X Iy (36) In Sec. Il C when we calculated the optimal valueppin
i=0 i=N(1) Eqg.(16), we implicitly assumed that the gene value distribu-

tion is given by Eqg.(17) and that thereforer=0. If o is
nonzero then the values of * will be spread aboutn;™)..
(ho = i+ 15— 1. (37) Considering the asymmetric nature of the discontinuitg/in
L, - 1 at its maximum value in Fig. (8), we might expect the
. 4 agents to evolve such thEg<E,0pt in order to increase their
Assuming thap.=n; gi, from Eq.(15), we can see thdi and 5 oa1nings. However, the asymmetry at the discontinuity

Finally, using Eq.(34) gives

|2 will be given by in the memoryless model is greater than in the original. Thus,
0 if1<0.5, 1 . we would also expect the deviation pfto be greater in the
=11 =12 if 1 <0.5, (38  Memoryless model.
— if 1 >0.5, , Figure &b) shows numerical data fdd;., in the memory-
2 1 if1>025, less model. Any deviation in the figure is too small to be

since the summations cover the entire peak of the Gaussiafibservable(see also Fig. ¥ Therefore, we conclude that a

exactly half of it, or none at all. From Eq&7) and(38) we different effect, one most probably related to the variation of

obtain values fokh,), in the dynamic regime of the predictionh;, must be responsible for the deviation ob-
served in the original model.

1
"3 if | <0.5,
. +1
(hy), = X (39) I. Autocorrelation of n;
+= if 1 >0.5, In this section we consider another property of the genetic
3 model: the autocorrelation of the time serigs. First of all

which agree exactly with the values found by Lo in Ref. We shall present numerical data contrasting the behavior of

[14]. the autocorrelation in the original and memoryless models.

The values given in Eq:38) depend on the assumption We shall then consider a Markovian analysis of the original

that(nfh% is given by the optimal value of E15). In fact genetic model which explains the behavior of the autocorre-
. 1 . +1 . . .

as we see in Fig. (&), numerical simulation using a large lation of n;~ observed therein in the simplest casemof 1.

number of agents reveals that this is not the case. In the
figure nht—(n™)~0.00N corresponding top; o (Do
~0.002. Careful observation of Fig. 4 reveals thgb, al- We define the autocorrelatidh(x;) of a time series; as
ways lies slightly closer to 0.5 than the value predicted byfollows:

1. Numerical results

056101-8
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et al. state that “a simplified version of the modt#idat makes

no use of memorig indistinguishable from the original for-
mulation.” We agree that, in the restricted casé=.5 con-
sidered in Ref[5], the gene value distribution functions and
the autocorrelation functions of thg* time series are indis-
tinguishable. This does not, however, represent a rigorous

m=1-—-~1 proof of equivalence. In contrast, the numerical data pre-
R (LT Rnbteit sented in Fig. 7 demonstrate that, fet 0.5, the two formu-
02 b Z Zi , i lationsare distinguishable. While foh,=R , the memoryless
=5 - model yields equivalent results fén;*),, it does not do so
o4r ) ! ! ! ] for higher moments. Therefore, any analysis in which pos-
0 2 4 Lag 7 8 8 10 sible autocorrelations in the* time series could be a factor

could not be conducted using the memoryless model. Also,
FIG. 7. Autocorrelation of they* time series for the range of the deviation ofp; from the optimal value of Eq(16) (dis-
values ofm shown. Model parameteid=1000,(a) |=0.4, and(b) cussed in Secs. Il G and IHneans that the gene value

1=0.5. distribution functions are also not strictly indistinguishable
accept at=0.5. Furthermore, Fig. 3 demonstrates thét ih
(XXew = ()2 the memoryless model is taken to be constant the two models
CX=—"m (42)  are also distinguishable, for= 0.5, in terms of(n’),.
X0 = (Xt t
where 7 gives the lag time. 2. Markovian analysis
Figure 7 shows the autocorrelation of the attendance time
seriesCT(nt”) for 0=<7=<10 and I=m=<5. We can see from In this section we will present a Markovian analysis of the

the figure that fot =0.5 there is no significant correlation for action of the memory in the genetic model. This analysis
7>0. Forl #0.5, in contrast¢(n;") as a function ofrhas a  must be performed separately for each valuenaff interest
clear structure. The magnitude 6f,(nt+l) is nonzero forr  since each leads to a distinct state space. Here we shall
=(m+1)i, wherei=1,2,3, ..n{'l and ntilT are anticorrelated present the analysis fan=1 only. Treatment of higher val-

for odd values of and correlated for even values. Figure 8 ues ofm is possible, although cumbersome, since they lead
showsC,(n/%) for the same values afand| depicted in Fig.  to state spaces that are too large to be treated conveniently by
7. However, this timeh, was derived from a random exog- hand.

enous source rather than the memory. It is clear from a com- The first stage of our analysis is to define a convention for
parison of Figs. 7 and 8 that the structure observe@l(in;")  labeling the states of the memory. Each state label must de-
in Fig. 7 is present only in the original model with memory. fine the values oh,, A, and the state of the memory. This is
Plotting the autocorrelation of the prediction time sefigs  the minimum set of information needed to calculate the state
yields a graph identical in form to Fig. 7. From this we cantransition probabilities. Fom=1 the memory will contain
see that the structure present in Fig. 7 derives from structurgm™=1-5 antries corresponding to the two possible histories

present in the prediction time series. . A_,;=-1 andA_,;=+1. We shall label these entrieg* and
Thus, one of the fgncthns of the memory is to mtro.ducemtﬂ, respectively. Each state therefore comprises four at-
nonzero autocorrelations into the prediction time sehgs

These will clearly not be present in either of the memoryles§tribUteS each of which can take values +1. There are there-
models in which eitheh,=+101t or h==.. In Ref. [5] Bur- ore 16 possible states which we denote using the shorthand

gos and Ceva found that, fo=0.5, the gene value distribu- notation described in Fig.(B). We label these states by anal-

tion functions in the models with and without memdtgk- &93,2 v:;;[h ﬂ:he. bma:;]y ”””&F""‘tf syste? as Sfr%\llvntmﬂf )9 "
ing h,=+10t) are equivalent. Further, in Ref7] Burgos ote thath, gives the prediction made available to the agents

at time t whereasm;* and mi’* represent the state of the
memory once it has been updated. Therefore, the prediction

o1 'a)\ ' ' ' ' ] agrees with one of the states of the memory at tim# and
—~ T not at timet.
005 | , , , . . For the sake of clarity we shall consider the case of
<5 0B L) ' ' ' 1 | <0.5. By symmetry the results that we derive will also
oF apply tol >0.5. From Eqgs(6) and(40) and the definition of
o1s L i IT,.;, we have the following expression for the probability
0.15 L L L ) : -
that A;=+1:
0 2 4 Lag: - 6 8 10

FIG. 8. Autocorrelation of thaat+l time series with given by a = ifh=-1
random exogenous source. Model paramekérs1000, (a) |=0.4, P[A = +1]= 2= 1T h= ! (43)
ht:R—O.SI and(b) |:O.5,ht:R0‘0. |1:0 if h'[: + 1,
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“HlaFERFE] 8 A R R T
—| —] [T [+ —| = — B = = —1 £ 1 o
| 2| B = | | SR HTH HTE i%E
—l —] ] —] —] —] il -l I~ = d 1+ I+ +
— ——— — ———— 160 5 1 9 148 138 9
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FIG. 10. List of the one-step transitions that the model can make
FIG. 9. (a) The labels used to index the 16 possible states. Thérom each of the states listed in Fig. 9.
states that are crossed out are those in wiicht1l andA=+1.
These can be omitted due to E¢3). (b) A key for the graphical

representation of each state. h.4 to be correlated anf’,(h)| <|C,(h)|, and so on. Thus

the form of C.(h,) for m=1 depends only on the values of
C4(hy) andCy(hy).

First we calculate the stationary stageof the Markov
chain defined by Eq44). This gives

wherel,; and|l, are given by Eq(36) and « represents the
numerical value of, in Eq. (40). The result of this is that if
the predictionh,=+1 then the global actio®\=-1 with
probability P=1. We can therefore discard states 3, 7, 11,

and 15 from consideration. In each of these sthtes-1 and 1-a
A=+1 and thus they will never be visited by the model. a
Using Eq.(43) we derive the state transitions shown in 1 a(l-a)
Fig. 10. We can see that each state makes a transition either s= > ) (45)
to one other state with probabilitP=1 or to one of two 1+ a
possible states with probabilitidd=a and P=1-a«, respec- @
tively. This information can be used to further simplify the o2

state space. We need not consider states that have no inward
transitions or states that have inward transitions only fromg, ., Eq.(42), the one-step autocorrelaticq(h,) is given by
states that we have removed. This allows us to remove states
2,8,9, 10, 12, and 13 from consideration. The model will
not visit these states once initial transients have died away.
This reduces our state space from sixteen states to only six:
0,1,4,5, 6, and 14.

Figure 11 shows the state transition diagram correspond-
ing to Fig. 10 in the simplified state space described agovgl'herefore we need to calculate values of), (h, and

From this we can form the following Markov transition ma- (.. Sincehy=+1, <h12>t:,1j In order to calculate values
trix, in which the remaining states are arranged in numericafo" the other_ two averages It is necessary 1o form the vectors
order: ho andh; which, respectively, give the valueslqfandhih;,,

for each of the states in the simplified state space. The ele-
ments ofhy can be read directly from Fig. 9. This gives

<htht+l>t B <ht>t2

Cq(hy) = .
)= 2

(46)

l-« 1-«a 00 0 O
0 0O 11 0 0 ho=(-1+1-1+1-1-1]. (47
= 001-a O a4 Taking the scalar product dfy with s gives
| o o o0 o 1 (44
14 5 1
1o a 00 O O ! >-0® ! > @
0 0 00 «o O
which defines the stationary Markov chain. ) '
From Eg.(44) we can derive ther-step autocorrelation
functionsC,(hy). Recall the oscillatory dependence @fh,) @ -0,

on 7 [see Fig. @) and Sec. Il 1 1. If C;(h)=0 andCy(hy)

=-€ (wheree is of order 0.1 then we would expect to ob-

serve the dependence depicted in the figurk, #ndh,,, are
anticorrelated andC,(h,)| <1 then we should expett, and

FIG. 11. State transition diagram corresponding to the transi-
tions depicted in Fig. 10 in the simplified state space. The arrow
labels give the transition probabilities.
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4 5 1 <,+2 =-1
hye2 = =1 hy = +1

6 0

\ htht+2 =-1 hpya = -1
0 b2 = -1
he = -1 /{6

g7 =t 14—5—»1

he=-1 ha=+1
S ohiheys = +1 h,+20= -1 S hihiyy = —1

FIG. 12. Example of how to derive the valuestgfi,, for each
of the states in the simplified state space.

-1
(hy=ho-s= —.
o

+1 (48)

PHYSICAL REVIEW E 70, 056101(2004)
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FIG. 13. Comparison of the theoretical result of E@sl) and
(55) with numerical results. The error bars show one standard de-
viation on the mean over an ensemble of five separate data sets.

vides a much more convenient measurexdhan computing

the summation foft, in Eq. (36), as was done in Sec. Il G.
Figure 13 shows a comparison of the theoretical values of

C.(hy), obtained with the numerical value @=0.323 from

In Sec. Il G we used an alternative method, not restricted t&ec. Il G, with numerical values. We can see from Fig. 13

m=1, to derive the expression fgh,); in Eq. (37). Substi-
tuting 1,=0 andl,=« in Eq. (37) yields Eq.(48) above.

that Eq.(56) correctly predicts the form af (h;) although it
does underestimate the correlation fer4. One possible ex-

Thus, the analyses presented here and in Sec. Il G aiglanation of this slight deviation is that in the analysis above

consistent.
We can deriveh, by multiplying the values oh; andh,;
in Fig. 10. This gives

hj=(+1-1-1+1+1-1). (49)
Once again taking the scalar product witlgives
a-1\2
(hther)=hy -s= ( o 1) - (50)
Therefore, from Eqs46), (48), and(50) we have
C4(h) =0. (51)

Thus, we expech; and h;,; to be uncorrelated, which is in

agreement with Fig. (3).
The two-step autocorrelatiaty(h;) is given by

(hiheio) = (h)?

Co(hy) = .
2~ thy?

(52

Therefore in order to calculate the two-step autocorrelatio
function C,(h;) we must calculatghh;,,);. As before we

must form the vectoh, corresponding to the values b, »

for each of the states in the simplified space. This can b

we have assumed thatis a constant. However, the value of
a depends very sensitively on the form Bf.;. Therefore
fluctuations in the gene value distribution of the agents could
cause significant fluctuations #a Markovian analysis of the
[=0.5 case confirms that (h;)=0 for 7>1, in agreement
with the numerical results of Sec. Il | 1.

J. Summary of memory characteristics

We conclude from the results presented in this section that
the genetic model performs better in the absence of memory.
By this we mean that the average total number of points
scored per time step whdp=+10t is twice that wherh; is
determined by the global memory. This was established
semianalytically in Sec. Il C and supporting numerical data
were presented in Sec. Il E. We showed in Sec. Il C 3 that
the reason for this reduction in the performance in the pres-
ence of memory is that the agents cannot directly control the
distribution of values foin, 1 as they can in the memoryless
jnodel, becausg;* is now also a function ofy. In Sec. Il F
we presented numerical data to show that the valuésfé)‘t
ando(n’*,t) can be reproduced if the predictitnis taken

done following the method described in Fig. 12, which givesPreserved. Thus, the feedback between the global action of

hy=(+1-1+1-1-1-1. (53)
Taking the scalar product with gives
(hhod =hy-s= % (54)
From Egs.(48), (52), and(54) we have
Co(h) =-a. (55)
Therefore, from Eqs(51) and(55) we have that
C(h)=1,0,-2,0,a%,0,-a> ..., 7=0,1,.... (56)

Note that as a result of this the autocorrelationhpfit m
=1 gives a direct measurement of the valuenofThis pro-

the agents anb, is of no benefit to the population of agents.
The only function of this feedback is to regulate the value of
(hor.

We also investigated the values observed for the time av-
erage of the predictiogh,); as a function of the resource
level I. We showed that the values @f,),=+0.5 that obtain
in the dynamic regime df;; <I <, are due to the deviation
observed between the mean of the agent gene value distribu-
tion P(x) and the optimal value predicted by EQO).

In Sec. Il I we showed that the form of the autocorrelation
function of then;* time series at+ 0.5 occurs as a result of
the cycles in state space performed by the memory. Finally,
we demonstrated that the two-step autocorrelation of the pre-
diction C,(h,) can be used to provide a direct measurement of
the deviation described above.
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Ill. SELF-INDUCED SHOCKS IN THE GRAND B

CANONICAL GENETIC MODEL ' M &

5 B - .400 9

In this section we move on to consider the important prac- MW“’: ;g%u%
tical property of self-induced shocks, otherwise known as ) 7%

L 1 -1200
endogenous large chang@sLCs). Such large changes are 28200 28400 28600 28800 29000

arguably a defining characteristic of complex systems, yet Time step ¢

there is no rigorous quantitative description of such eventsin g 14 Example of an endogenous large change of the volume
real-world realizations of complex systeni@®r examples, i, the GCGM with accompanying price time series. Model param-
see Refs[15-27). eters:N=501,m=3,r=0.2,1=0.5, andT=12.

Ny
I8 R

volume: ny;

A. Introduction

. . . An example of a large volume change observed in the

As we show here, the genetic model can be generalized 'BceM is given in Fig. 14. We can see that large changes

a straightforward way to produce a model systgm that dem()ccur in the volume accompanied by large price movements.
onstrates such large changes. The extent to which these lar

h s ” h h d ¢ wever, the behavior of the volume in the figure is quali-
changes are insensitive to the memory then provides a use tively different from that observed by Johnsetnal. in the

tool for analyzing the microscopic causes underlying theS%CMG [21]. Reference[21] reported two distinct types of
large phanges._ln particul_ar, we introduce an e‘>l<tension' of thBehavior. For traders with a long memory the volume was
genet|.c model in Sec. “.' in which the numt(mr_ volume”) observed to be continuously fluctuating with occasional par-
Of. active agent; IS a t|me-dependent q“af?“ty- I3y."’m"’llog)(icuIarly large fluctuations which were not instantaneous;
with systems with variable particle number in statistical me-_, -1 jike the “drawdowns” and “drawups” discussed by
chanics, we shall refer to this variant of the genetic model a%onette and Johansen in RE28]. For traders with short

fche grand canomcal_genehc mo_c(é]CGM). This extension ,memories the volume was frequently zero with occasional
|s_anglogous to various extensions of Cha_IIet and Zhang Farge instantaneous spikes and corresponding instantaneous
minority game [2] with variable particle nu.mber. price movements. In contrast, in Fig. 14 the volume exhibits
[15.'16’21_25 generally known as the grand canonical MI" small fluctuations and occasional instantaneous changes
nority game(GCMG). which are accompanied by periods of large fluctuations in

One particular application might be to financial markets’the price. We shall see that the behavior that we observe in
where large changes are called cra§hes or Qrawdovx{ns. Hoveﬁese figures is typical of the behavior of the volume in the
ever, the genetic model does not directly yield a price tim CGM

series. Therefore, if we want to consider the effect of endog-

enous large changes on price, we must derive one from fun-

damental observables suchrgs. By definition the threshold B. The grand canonical genetic model

value of n;‘lzNI corresponds to the state in which the vol- )

ume of the item that is being traded which is available for 1he genetic model represents an abstract model of a
sale is equal to the demand. Therefore, the more general caB@Pulation competing for a limited resource and as such it
of 1#0.5 represents a system in which the quantities irPftén discussed in the context of financial markets

which an item is bought and sold are not equal. The exceds:48,9,12,13,2D In such a context, however, it does not
demand is then given by seem realistic that the agents trade at every time step. A real

market trader would also have the option of withdrawing

from the market and returning when s/he felt confident of a
successful outcome. In order to model this extra degree of
. freedom, and in keeping with the work of Johnseinal. in

If we let the action of an agers=—1, +1 represent choos- Ref [21], we shall introduce an extension of the genetic

ing to buy or sell, respectively then we obtain the following mode| in which the agents are free to opt in and out of the
expression for the pricey,, at timet+1 in terms of the price game.

I
A= (E)Nbuy_ Nsel- (57)

att: As in the original genetic model described in Sec. Il and
1 | R Ref. [3] there areN agents participating in the model. How-
Ty = m¥ (E N —n |, (58)  ever, unlike the original model they do not all play at each

time step. At any time there will be two populations of
where\ is known as themarket depthand determines the agents, an active population and an inactive one. Active
magnitude of the change in price caused by a unit change iagents participate in exactly the same way as they do in the
A. Different expressions for the pricg, in terms of the ex- original model. In contrast, an inactive agemill continue
cess demand have been discussed in the literat(gee, for  to make its choice as if it were participating; however, it will
example, Refs[26,27). The linear expression in E¢58)  not be considered when calculating the global action and its
represents the simplest of these and is not as realistic &ore will not be updated. We can imagine that inactive
expressions in higher powers Af Nevertheless, it is more agents represent traders who do not make a trade atttime
than adequate for the illustrative purposes for which we shallnstead they make a prediction of whether their best choice
need it. Since in all that follows the units of the priegare ~ would have been to follow the predictiag=+h, or to re-
arbitrary we will takex=1. fute it &..=—h,. Since such a trade i8rtual in that the trader
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does not act on it, it has no effect on the market and thef z..=1,

trader is protected from losing, or even making, money. The 1 ifo.<T
only effect of such a virtual trade is that the agent reevaluates Zigs1 = '_ Ve b (63)
its confidence level depending on whether the trade would ' 0 ifv=T.

have been successful or not. Thesgual tradesare analo-

gous to thevirtual pointsearned by strategies in the minority

game[2]. They allow the agents to keep track of their poten-

tial performance without in any way representing an agent’s 1

wealth Y TR A =52 z(a D). (64
These modifications necessitate some minor changes to '

the basic equations of the genetic model that we introduceth this section we shall defing to be the mean gene value of

in Sec. Il. Let the activity of an agemtbe given byz.. If  the activeagent population. Thug; is given by

z4=0 then agent belongs to the population of inactive

The expression in Eq2) for the number of agents for which
a=+1 becomes

agents, and vice versa far,=1. Equation(1) for the global pi= EE ZPi. (65)
action A, now becomes N !
Therefore, the expression in E@) for the mean number of
+1 nl<in agents following the predictioh, becomes
A= Y wheren = 2z (59)
t - it —
-1 n*>In, i <nt+ht> = E Z,Pj;t = NP (66)
I

Inactive agents become active and active agents become in- C. Price time series

active according to their performance in the recent past. We
defined a model parameter known as doafidence interval
T. An inactive agent will become active if it would have won

for T consecutive time steps; in other words, an adefor (58) we can see that the price chanlyer=m—,_, is posi-

V<VT'C|2 f"ﬁtzo Vr‘:" @Ct'vatﬁ’zi?tt’if\llzl' 'fn"’t‘*?vf\;rt'?f fo;]t_i;]K tqi-v five and negative font'<nJ andn'>n|, respectively. By
o € same way, an aclive age ecome inactive comparison with Eq(59) we can see that the condition that
it loses forT consecutive time steps. In order to control the

o S . determines the sign of the price change at tinethe same
activation and deactivation of agents we assign each agenta -+ which determines the global actiép with the ex-
quantity with we shall call its virtual points;., in keeping tion that th lity in E@59) ai - h f
with the virtual points allocated to strategies in the minorityCep lon that the equality in E¢S9) gives a price change o

. o . zero. With reference to Eq6) we have the condition that
game. For an active agemt, is increased each time the

= H +ht'
agent loses and is reset to zero if it wins. Thus, for activeATr 0'in terms ofn, ™

agents;.; is the number of consecutive time steps for which n:ht =n(1-1) if h=-1,
the agent has lost. For an inactive agentis increased each At < ifh=+1
time that the agent would have won and is reset to zero each toT ot ¢ '
time it would have lost. The updating rules fof; can be  From this it follows that the probabilit?[A7= 0] that the

As we stated in Sec. Ill A the cutoff, now given yj*
=n, in the genetic model, defined by E&9), is by defini-
tion the state in which the excess demakd0. From Eq.

(67)

summarized as follows. price rises or remains the same at titvis given by

If z.,=0,

" Plar=o0y={'2 Th=-1. (69)

TR0, i = 41,
0 |f a.i-t == At’ - .

Vie1 = oo (60)  Wherel, andl, represent the summations defined by &%)

' vipt 1 if g = +A. with the substitutiorN— n,. We can see from Eq$40) and

If z.,=1 (68) that for 1<0.5P[A7=0]=0 for h=+1 and for

I>0.5P[A7=0]=1 for h;=—1. The result of this is that, in
the dynamic regime of the original GCGM with memory, one
{Ui't+ 1 ifa,=-A, of the values thah, can take will cause the price to rise or
Vits1=) . (61 fall with probability P=1. Note that in the cases of
' 0 ifa;=+A. |<0.5h=-1 and |>0.5,n,=+1 we do not expect that
P[A7=0]=0.5, as might be expected. Recall that, as we

Th les f ¢ activati d deactivati h discussed in Sec. Il Gy deviates from the optimum values
€ rules for agent activation and deactivation are then, fi;yen jn Eq.(16) in the genetic model. Furthermore, because

73 =0, the GCGM is frequently perturbed by ELCs it does not settle
into equilibrium in the same way as the genetic model and so
) p; is more variable although, as we shall see, it does remain
Zie1 = {O I.f vig =T, (62) close to the values given by E@L6) in the periods between
’ 1 ifv=T, ELCs.
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D. Endogenous large changes in the GCGM P(p) which are biased to favor agents with gene values near

As we shall see the behavior of the model in this regime i?=0-0 andp=1.0 will be the most susceptible to ELCs.
rich and complex. For this reason we shall initially consider Now that we have considered what forms ®fp) are

a simplified memoryless variant of the GCGM which is most susceptible we will discuss hoR(p) evolves in the
analogous to the memoryless genetic model considered ifCCM-: In the periods between the ELCs the number of
ctive agents), given by Eq.(59) is a slowly varying func-

Sec. II. Subsequently we shall consider how the inclusion o ion of time. As we remarked above, correlations between the
memory affects the behavior of the full GCGM. : '

ELCs in the GCGM result from a combination of two behavior of large numbers of agents are expected to be rare,

) ) .~ and son, will fluctuate slowly with time as individual agents
factors, both of which must be present if a large change is 1Q stivate and deactivate. Hence the results of Reéf43 can

occur. We shall see later that thg capacity of ihe_mo_del Qe applied to the GCGM in these periods. Refererdek3
undergo an ELC depends sensitively on the distribution ojggcripe how in the genetic model the agents self-segregate

gene value®(p). However, a suitabl®(p) is not a sufficient  jnto two populations having low and high gene values—
condition for an ELC to occur. It is also necessary for athese two populations can be thought of as a “crowd” and an
particular pattern to occur in the global action time series anticrowd”. Thus, although we have yet to consider what
We can think of this pattern as taigger that initiates the the effect of an ELC will be orP(p), we can see that after
ELC, but only if P(p) is in a susceptible state. Furthermore, such an evenP(p) will evolve continuously toward the ex-
we shall see that the natural evolution of the model causegemized distribution described by Refl3]. From our dis-
P(p) to evolve toward the most susceptible state while ELCsussion above we know that it is this type of extremized gene
move P(p) toward the state in which it is least susceptible.value distribution that is most susceptible to ELCs.

Thus, rather than settling into equilibrium like the original

genetic model, the evolution of the GCGM is characterized .
We saw above that it is only the zero and one agents that

by a cyclic behavior:P(p) periodically evolving toward a S . . .
: o . an participate in the highly correlated behavior necessary
El?cr:e susceptible state until its progress is reversed by a&)r an ELC. Therefore, in order to think about what patterns
: in the global action time series might induce an ELC it is
e necessary to consider these agents. If at time st +h,
1. Susceptibility of Rp) then each zero agent will lose while each one agent will win.
ELCs like the one illustrated in Fig. 14 are the result of If A;=+h for T consecutive time steps then immediately fol-
highly correlated behavior of the agents. By this we mearowing the Tth time step a fraction 1y of the active zero
that a Significant number of agents activate or deactivate agents will deactivate while the same fraction of the inactive
the same time step. This implies highly correlated behaviopne agents will activate. Similarly, &=~h; for T time steps
since in order to do so the actions of all of the agents in.then a fraction l'f'd of the inactive zero agents will activate
volved must be identical for th€ preceding time steps. Itis and a fraction 14, of the active one agents will deactivate.
initially surprising that such a high degree of correlation Thus we can see that sequences of time steps in which
could arise in the GCGM because, unlike minority game=+h; or Ai=—h; for T time steps will be important for the
agents, GCGM agents make their decisions stochasticallgorrelated agent activations and deactivations that make up
The probability of coincidence between the actions of a larg@n ELC.
group of agents will usually be very small. However, there Since such sequences are important in the occurrence of
are two groups of agents in the model whose behavior is weffLCs it would be useful to have an expression for the prob-
correlated. These two groups are those agents whose geﬂbl“ty that they will occur. The first step is to derive expres-
values lie within a certain small rangof 0 and 1. We shall ~ sions for the probability tha#,=xh;. We shall see later that
call agents belonging to these groupsro agentsandone  these expressions are important in their own right. From Eq.
agentsrespectively. The degree of correlation of these agent§6), substitutingn; for N, and the definition ofl;;; we have
is a decreasing function @ being a maximum fos=0. Itis  the following expressions for the probability thag=+h;:

2. Triggers in the global action time series

easy to show that if we set an upper limit on the fractign ne
of zero and one agents whose actions are not perfectly cor- E ., if h=-1,
related over a period of time steps¢ is given by i=1-hn,
PIA=-h]={
5=1-(1-fy¥. (69)

> M, if hy=+1,
The precise value chosen f@t is not important since it L =i+l
serves only to give a measure of the population of zero and
one agents. Therefore it is more convenient to choose a fixed
value for § which gives rise to values df; that lie within an
acceptable range, rather than choosing a diffeédfior each P[A= +h]=1
value of T. In all that follows we shall take5=0.02 which ,
gives f4<0.33 for T=<20. 2 I i h=+1.
In short, we see that the probability of highly correlated (=0
agent behavior increases rapidly as the number of zero andle shall see later that,> 1. Therefore we can use the con-
one agents increases. Thus, gene value distribution functionsuous approximation ofly(x) for II;;. As demonstrated in

r(1—I)nt—1
> Iy if hy=-1,
i=0
Ing

(70)
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Ref. [12], I1;(x) will be a Gaussian. In the GCGM only ac- Referencq30] presented an analysis of crashes in finan-
tive agents contribute to the mean and variances? of  cial markets such as the one that occurred on the NASDAQ
I1,(x). Therefore in April 2000. The authors propose that such crashes result
) from speculative bubbles in which large numbers of traders
TI(x) = 1 exp{— 1<X__'“> } (72) share the same unrealistic expectations of the future perfor-
o2 2\ o ' mance of the companies in question. These bubbles eventu-
ally burst, apparently in response to some event which acts
as a trigger. We can draw a broad qualitative analogy be-
tween this and the GCGM. The extremized gene value dis-
tribution discussed in Sec. 1l D 1 corresponds to a state of
the model in which large numbers of agents share the same
In the continuous approximation we have unrealistic expectation that the global action will be equal to
oo or the opposite of the prediction. It is thépeculativedistri-
J IL(x)dx if hy=-1 bution that is most susceptible to triggers that occur from
(

where

pEnpy 0% =2 zp(L - Py (72)

1-Hn-1/2 time to time in the global action time series.

P[A‘t == ht] =~ +00
f (Jdx  if hy= +1,
|

ne+1/2 E. ELCs in the memoryless GCGM

We form the memoryless GCGM from the full model de-
. scribed in Sec. Il B by takingn,=+10t in exactly the same
IL(x)dx if hy=-1, way as we did in Sec. Il. Our discussion of the susceptibility
s/ of the gene value distribution functio®(p) in Sec. IlID 1
f ' M)dx  if h= +1 applies equally to the memoryless and the full GCGM. The
. t t ’ equivalent of the patterns @ftime steps in whict=-h, or
A=+h, are those in whictA;=-1 or A;=+1. In the memo-
ryless case, the expressions in Efgd) become

(A-hn-1/2

P[A;=+h]=

(73

where we have used the fact that simces of order unity the
integrands in Eq(73) will approximately vanish forx<<0

+
andx>n,. This has allowed us to replace lower limits of 0 1 5 7 M
with —e and upper limits of, with +o. P[A= £1]~ > lxer =/ (77)
Finally we can express E@73) in terms of erf functions oV2
as, forhy=%1, _ L .
- This expression is no longer dependent lapn since h
1 . =+10t. Therefore, in the case of the memoryless GCGM,
1 2 Mehq we can derive the following simple expression for the prob-
P[Ai=-h]= > l¥er —E , ability A; that A;=%1 for T consecutive time steps:
o\
T T
L oy Z
5 Ny _ 2 =
1 2 Ai=—|1-er = + 5| 1+er =
P[A = +h]= 5 el ——=—/|, (74) 2 a2 2 a2
o2 (78)

where for convenience we have defingdas follows:

o . — Figure 15 shows\; given by Eq.(78) and the average wait-

A =p— (=D, A =p-l. (79 ing time, given byA; ™.

The erf function is defined as There are a couple of points to notice in Fig. 15. First of
all the minimum ofA, does not occur at; =0 but at a value
of \{=1/2n,. This results from the fact that in the case of
n{'lzlnt our model tie breaks by declaring the global action
A=+1. The most obvious feature of Fig. 15 is th&tin-

We can see from Eq(74) that the expressions for the creases rapidly with increasing. This means that the prob-
probability thatA;=+h, depend upon the values taken gy  ability of a trigger sequence occurring in the global action
For this reason it will not be possible in general to derive atime seriesA; increases with the deviation qf; from I.
simple expression for the probability thag=+h, for T con-  Therefore we can consider the valueXjfto be controlling
secutive time steps. Such an expression would depend updhe probability that a trigger sequence will occur. Further-
the realization of the prediction time series during the spemore, note that\; never vanishes and so the average waiting
cific T time steps under consideration. In the next sectiontime never goes to infinity. Crucially, this means that regard-
however, we shall see that a simple expression can be déess of the value op; there is always a nonzero probability
rived in the case of the memoryless model. that a trigger sequence will occur.

X

2
erfx) = — | etdt. (76)
VJo
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FIG. 15. The probability of occurrenck, and the average wait- ; . .
ing time At_1 for a pattern ofT consecutive times steps in which 0.10 { N T L 1
A=+1 or —1. In both cases results are givenTer5 and 12(given 684060 684080 tim?’;t? ' t68‘“2° 684140
by the numbers in parenthe$e$Ve have takem,=205 andoy P
=4.9 which correspond to their mean values over the period de- Fig 16. An example of an ELC in theemoryles&CGM with
scribed py.Fig. 16 below. Note that, in the caseTef12, the right N=500,1=0.4, T=12, r=0.2, andm=3. (a) The global actionA,
hand axis is scaled by a factor £0 and the virtual points; , of an agent which initially is inactive and

has a gene value @ ..=1.0.(b) The prediction performancs, and
1. Price time series in the memoryless GCGM the probabilityP[A;=-1] that the global action is —1(c) The de-
a\{iation of p from I, \{.

One of the advantages of the memoryless GCGM is th
the dynamics of the price time series are particularly simple.
We saw in Sec. Il C that the probability of a price fall at same time period. The quantities depicted in the figure are
time t is given by the same condition that the global actionthose that play an important role in the mechanism that
A,=-1. ThereforeP[Aw< 0]=P[A,=—1] given by Eq.(77). causes ELCs. Later, .in Fig. 18, we shall demonstrate what
Thus the price will fall with probabilityP<0.5if \; <0 and ~ effect the ELC described here has on extemiaservables

with probability P>0.5 if \; > 0. such as the price and the volume. In the following para-
graphs we describe the significant features in Fig. 16. The
2. Example ELC paragraphs labeleae correspond to the identically labeled

Now that we have introduced the memoryless GCGM welime intervals in the figure.
shall consider a specific example of an ELC. This will allow a. This sequence of time steps in which\=+1 provides
us to see how the elements discussed in Sec. Il D are irthe trigger sequence discussed in Sec. Il D 2. At each time
volved in ELCs in the GCGM. In order to do this, however, step during this period the virtual points, of the inactive
we need to introduce one further quantity which we shall callone agents and active zero agents increases. When the model
the prediction performancend denote byy,. At time stept ~ reaches the final time step in this periad=T=12 for both
the value of 7, gives the number of previous consecutive inactive one agents and active zero agents. The inactive one
time steps at which the prediction was the same as the globagents will then activate while the active zero agents will
action A,=+h,. In the memoryless GCGM the value of  deactivate. The virtual points of these agents will then be
gives the number of consecutive time steps precediag reset to 0. Unless the numbers of one agents activating and
which A;=+1. The reason tha, is useful is that during one z€ro agents deactivating are approximately equal, this corre-
of the so-called trigger sequences that we discussed in Sel@ted behavior will lead to a step change in the volume like
D2 = will become large and, thus, it can be used tothe one depicted in Fig. 14. Only active agents contribute to
identify these events. p [see Eq(65)] and so this instantaneous loss of zero agents

Figure 16 shows the values of the global actigrand the ~ and gain of one agents causgs and therefore\{, to un-
prediction performancey, for a period of time in which an dergo a step increase. We can see this clearly in Fig).16
ELC occurs in the memoryless GCGM witt=0.4 and T b. Throughout the period of time steps labeled) A;
=12. In order to show the behavior of the one and zerg=0.16. Equation77) gives P[A;=-1] in terms of\{. The
agents that we discussed in Sec. IllD 1 we have also inmean values of, and oy over the time period described by
cluded the virtual points;, of an ageni which is inactive ~ Fig. 16 aren;=205 ando=4.9. By substituting these values
and hasp;;=1.0 at the beginning of the time period shown. into Eq. (77) we can see that fok; <-0.05 and\; >0.05
Since the actions of zero and one agents are anticorrelatd] A,=—1]~0 and 1, respectively. Therefore, if the magni-
(as we saw in Sec. Ill D)ithe virtual points of inactive one tude of\; exceeds 0.05 the model becomes quasidetermin-
agents and active zero agents will always be the same. Thistic at time stept. Thus, for the period labeled, A;=-1.
same applies to the virtual points of active one and inactivelhe effect of this on the zero and one agents is exactly the
zero agents. For this reason it is necessary to gjyefor  opposite of that of period; the virtual points of the inactive
only one of these four groups in Fig. 16 since from this wezero agents and the active one agents now increase at each
can infer the virtual points of the others. Figure(iGalso  time step. Once again..=T=12 for both these populations
shows the probabilityP[A,=-1] that the global actiomd,  at the end of perioth and so the inactive zero agents activate
=-1 at each time step, given in terms xf by Eq. (77).  while the active one agents deactivate. Note that the inactive
Figure 16c) shows the deviation of, from I, A, over the  zero agents activating at the end of peripare not just those
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that deactivated at the end of periadAny zero agents that Wy T ' ! ! T
were inactive at the start of peri@awould have been unaf- 010 7
fected by the trigger sequence; however they now activate =

along with those that previously deactivated. The result of 0.00 MR A vl

this is that\; does not return to the value af =~0.4 that it wH } + } } } }

1 T
zero agents ——
one agents -----

had at the end of period. That would have returned the
model to its nondeterministic state. Instead, howexgr
-0.06 and so at the start of periedP[A;=-1]=0.

c. This period ofT time steps in whickA,=+1 is identical
to perioda in terms of its effect on the one and zero agents.
Thus, at the end of periodthe inactive one agents reactivate
and the active zero agents deactivate, resulting in the same
step increase in; that we observed before. The important
difference between periodgsandc is that the first occurred FIG. 17. (a) The evolution of the numbers of agents for which
stochastically(there was a significant nonzero probability pi+< & (zero agentsandp;,> 1-& (one agentsover a time period
that A=%1 at each time stgpwhereas periodc occurs  that includes that depicted in Fig. 1@) \; over the same time
quasideterministicallythe probability thatA;=+1 for the T  period. The occurrence of ELCs is indicated by spikes inXpe
time steps in perio@ is P=1). time series. The first ELC identifiable is that depicted in Fig. 16.

d. Similarly, periodd is identical to period except that at
the end\;=~0.03. Once again from E77) we can see that The result of this is that the population of zero and one
this givesP[A=-1]>0. agents that participate in the synchronized activations and

e. P[A;=-1] is no longer~0 and so the model returns to deactivations steadily decreases throughout the ELC. Even-
its usual stochastic behaviof; taking values -1 and +1 tually there are no longer enough of these agents to maintain
probabilistically. This represents the end of the ELCs since\t+ at a magnitude greater than 0.05 andP8,=—-1]# 0 or
there is now no mechanism for the synchronized activation The model then returns to the stochastic state.
and deactivation that occurs during perigdsd. The model Note that the example depicted in this section does to
now returns slowly to thequilibrium state, in other words, some extent represent an idealized case. It is not guaranteed
the state that it is in once transients due to any ELCs havghat the oscillations in; are of a sufficiently large magni-
died away. tude thatP[A,=-1], given by Eq.(77), takes only values-0

From the analysis that we have presented above we mighf,q ~1. Therefore, some of the periods Bftime steps in

have expected that the periodic synchronized activations angich A is consistently -1 or +1 will not occur determinis-
deactivations that we described above would continue indefijcaly. For this reason short interjected periods in whighs

nitely and that the model would never return to the stochastigot consistent can occur between such perioda &sd in
state. One question that we did not address above, howevgfiy 16. The occurrence of ELCs in the model is robust

is that of how the model manages to break out of the deteragainst such stochastic fluctuations. However, during such an
ministic behavior that it exhibits during the ELC. We have interjected time period agent mutation will act to bring

considered the effect of a period @ftime steps in which  ¢j5ser to 0.0. Therefore the longer such a period is the lower
Ai=%1 on the zero and one agents in terms of agents activgpe probability that the ELC will continue.

tion and deactivation. However, we have not considered
agent mutation. We shall see in what follows that it is agent
mutation that allows the model to return to the stochastic
state. During periodb—d the one agents are active only at  In this section we shall bring together the elements that
time steps at whichtA,;=-1 and the zero agents are active we have introduced so far in order to give a broad overview
only whenA,=+1. Because of this the scores of zero and onef ELCs in the memoryless model. We demonstrated in Sec.
agents are decreasing functions of time. Their scores adl D 1 that in what we now call the stochastic state the
fixed when they are inactive and when they are active theiagents migrate toward gene valyes0.0 andp=1.0. There-
individual actions are the inverse of the global actiep;  fore, while the model is in the stochastic state the number of
=-A;. While these agents are inactive the model is favorablegero and one agents increases. This increases the susceptibil-
to them and so aftef time steps they reactive. However, ity of the gene value distributiofP(p) to any trigger se-
because the behavior of all these agents is so highly correfuences that might occur and also increases the duration of
lated, in doing so they change the dynamic of the model sthe next ELC. If a trigger sequence occurs in the evolution of
that it is no longer favorable. This has a clear analogy withthe model then if there are enough zero and one agents an
the phenomenon aharket impacin economic systems. ELC will take place as described in the previous section. One
Since the scores of the zero and one agents are decreasiogthe effects of the ELC is to reduce the numbers of zero
functions of time during the ELC, the scores of these agentand one agents. This decreases the probability of a subse-
will rapidly reach the death scosg,=-D at which they mu-  quent ELC occurring.
tate. If r>$=0.02 [defined by Eq.(69)] then with a very In order to make this clear we show in Fig. (by the
high probability of(r— 8)/r a mutating zero or one agent will numbers of zero and one agents during the time period lead-
mutate to a gene value @f,> 6 or p;;<1-4, respectively. ing up to and after that depicted in Fig. 16. Figure@?

30

20

10

Number of agents

0 1 1 ]
682000 683000 684000 685000 686000 687000 688000
time step: t

1 ]

3. Summary of ELCs in the memoryless GCGM
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FIG. 18. Evolution of the number of active agen{galso know de
as thevolume and the pricer, [defined by Eq(58)] over the same R S SR - S ; }“-»39
time period described by Fig. 16. s + + -+ 50 Bropt=1-]
AV Propt=1-1 12: +Pz,opt =
, N | = esty | )
shows\; over the same time period. As we saw in Sec. 6 1 13e

[l E 2, ELCs can be identified by the spikes that occur in the
\{ time series. We can see in Fig. 17 that, while the ELC that
we examined in Sec. lll E 2 causes a large decrease in th
numbers of zero and one agents, significant numbers remal
and so the initial ELC is followed by several smaller ones. .
The most important feature of Fig. 17 to notice, however, iswe Will assume thap, oscillates between values that are
that sudden decreases in the numbers of zero and one agefifgater and less than the equilibrium value by a magnitude
that occur at each ELC and the steady increase that the§seater tharo/n but less thar2p;, opt-1 such thatP[A,
quantities exhibit in the periods between ELC. =-hy], given by Eq/(74), takes only the values 0 and 1. This
So far, in order to understand the mechanism that leads tgields the following values foP[A;=—hy].
ELCs, we have concentrated on quantities that are internal to For|<0.5,

FIG. 19. Markovian transition diagrams for ELCs in the full
CGM. The state labels are as defined by Fig. 9 ansigns give
e value ofh, in each state.

the model. In the economic analogy these would correspond 0 ifh=-1
to quantities whose values would be extremely hard to quan- < Eopt; P[A.=-h]= ot '
tify, for example, the confidence of, or strategies adopted by, ' 1 if hy=+1,

traders. However, as we remarked in Sec. lll A, ELCs in the

GCGM also affect quantities that are directly observable and — _ _J1 ifh=-1,

guantifiable such as theolumeand theprice. We have plot- P> Propi PLA=—h= 1 if h= +1.

ted in Fig. 18 the volume and the price over the same time

period described by Fig. 16. We can see from Fig. 18 that the For!=>0.5,

oscillatory activation and deactivation of the zero and one o 1

agents that we described in Sec. Ill E 2 leads to correspond- Pt < Propt P[A=—h]= 0

ing oscillations in the volume. Note that the oscillatory na-

ture of ELCs will lead tovolatility clusteringsince each ELC 1 ifh=c1

contributes several large changes in the volume. Pi> Proni PIA=—h] ={ S (82)
We saw in Sec. Il E 1 that the probability that the price P 1 if hy=+1.

falls a_t timgt P[AWI<9] is equal toP[A:=-1] which is in As we saw in Sec. Il D 2 it is sequences Dftime steps in

turn given in terms ok, by Eq.(77). Thus, we can see from which A.=—h, or A.=+h, which act as the triggers for ELCs

the plot of P[A;=-1] in Fig. 1§a) that the oscillations i in the full GCGM. We can see from Eqe80) and (81) that
will give rise to alternate periods in which the price rises a”dAt:—ht with probability P=1 when p;>Ppop Thus

falls, as we see in Fig. 18. In terms af the ensemble P> Proptleads to the sequences of time steps which have the

(80)

if hy=—1,
if hy=+1,

average excess demand is given by: same effect on the zero and one agents as the sequences of
ot time steps in whichAi=-1 that we saw in the memoryless
(Ay=-—1 (799  GCGM. The situation whem; <p o is more complicated.

1-1 We can see from the above expressions that] £00.5, A,

Thus we can see that the magnitude of the price change &1 while, for| >0.5, A:=+1. Thus, forp;< p; o,y We expect
each time step is proportional tg\;|. Therefore, the overall Sequences of time steps in whigfF -1 andA;=+1, respec-
fall in price depicted in Fig. 18 is due to the fact that thetively. However, it is not immediately apparent thgt=+h

magnitude of the positive excursions xf during the ELC @S We might expect. _ .
exceeds that of the negative excursions. By application of the same Markovian analysis that we

used in Sec. 111 2 to then=1 case, we can derive the state
transition diagrams given in Fig. 19. The state labels are as
defined by Fig. 9. We can see from Fig. 19 that when
Before we examine some examples of numerically obp,<p;, the transition diagrams each contain two attractor
served ELCs in the full GCGM we shall consider a theoreti-states in whichh,=-1 and +1 forl <0.5 andl > 0.5, respec-
cally idealized case. In this section we will assume that intively. Thus, when the model is in these staf®j$\,=-h,]
equilibrium(py), is equal to the optimal valug, o given by =0 and thereforeA,=+h,. The reason that they can be di-
Eq. (16) of 1| for [ <0.5 andl for I >0.5. During the ELC  vided into two congruent subdiagrams is that in each case, as

F. ELCs in the full GCGM: An idealized case
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o & FIG. 21. Evolution of the number of active agenigs (also
) ; known as the volumjeand the pricem, [defined by Eq(58)] over
010 o ; : . the same time period described by Fig. 20.
R 7 I R RE R A
0.20 Hithik.tl..l L R ok o .
S S 0t -1 b,c. The(de) activation that is the result af causes a step
690060 690080 691000 691020 691040 increase in\; as we expect. However, the magnitudexgf

time step: ¢

during b and c is not sufficiently large thaP[A,=-h]=1

FIG. 20. An example of an ELC in théull GCGM with N Whenhi=+1. In fact, as we see from Fig. @), P[A;:=—h(]
=500,1=0.6,T=12,r=0.2, andm=3. (a) The global actiom®y, and  =~0.9 whenh,=+1. Thus we can see that in this regard the
the virtual pointw;, of an agent which initially is inactive and has  realization of an ELC described here is not ideal in the sense
a gene value op;;=1.0.(b) The prediction performancg, and the  discussed in the previous section. It is becaBs8d,=-h]
probability P[A=-h] that the global action isk. (c) The devia-  # 1 that for the second time step bf A=+h, resulting in
tion of p; from I, \{", and the predictiot. these two interjected time steps. Throughout pertody

=-h, as expected.
we remarked abové), takes only a single value. Therefore, d,e,f. The interjected period corresponds to the model
the value of the memory bit that corresponds to the oppositénding one of the attractor states in which
value of A, has no significance. This leads to the twofold =+h;. During periode, Ai=+h; once again. However, after
state degeneracy that we observe; states that differ only ithe reactivation and deactivation at the endeoh;~0.
the value of this attribute are equivalent. Another feature torherefore, by chancé=+h; for the next three time steps as
note in Fig. 19 is that, depending on the state that the modatell, resulting in the interjected periofl This extra long
is in when it changes fronp,>Ppy ot t0 Pr<Propy it May period in whichA;=+h, allows some zero and one agents
take several time steps to reach the attractor. Thus, unlike iwho had failed tqde)activate during thd time stepse to do
the case of the memoryless GCGM, we should not expec3o. Thus)\{ increases and so therefore ddg#=—h] (for
oscillations with periodT. There will likely be interjected h=+1).
time steps while the model finds the attractor. g,h,i. During g, A;=-h, despite the fact thaP[A.=—h;]

We can see that this analysis will apply to the case of=0.7 (for h=+1). h once again corresponds the model find-
generalm by considering Eq(80). For p;<pop A:=—1 or  ing the attractor state.represents the final period in which
+1 consistently. At the first time step after the activation andA,=+h, before \{" returns to approximately the equilibrium
deactivation of one and zero agents the history will contain asalue and the ELC comes to an end.
mixture of —1's and +1's. However, it is clear that aftar Note that the periods like andg, in which the magnitude
+1 time steps it will contain only -1's and +1's fo,.<0.5  of \{ is not sufficiently large thaP[A;=-h]=1 whenh,
and|>0.5, respectively, and the memory bit corresponding=+1, but in which nevertheles&=-h; for T or more time
to this history will also take the same value. These states isteps, occur with a much greater probability than they do in

which the history is{-1,-1,...,-} and hy=-1 or {+1,  the memoryless model. The reason for this is tRhg,
+1,...,+1 andh,=+1 correspond to the attractor states in=-h,]=1 whenh,=-1, unless the magnitude of the oscilla-
Fig. 19. tions in p; is so great that; =~0. Therefore, for any time

steps during periods like and g for which h,=-1, A;=-h,
1. Bxample ELC with probability P=1. We can see this clearly in the plot of
Now we shall look at a numerical example. Figure 20P[A,=-h,] in Fig. 2Qb).
gives the values of the global actiéy, the predictiorh,, the In Fig. 21 we show once again the volumeand the price
prediction performancey, \; and P[A,;=—h] given by Eq.  m over the same period described by Fig. 20. We can clearly
(74). Once again we have also included the virtual poits  see the effect of the discussion in Sec. Il C. Each time that
of an agent which is inactive and hap;;=1.0 at the begin- h;=—1 the price rises with probabilitp=1. Furthermore, the
ning of the time period shown. Figure 20 is equivalent to Fig.result of the deviation of the equilibrium value pf from
16 except that we have additionally included the value of thep; o (Se€ Sec. Il Gis that it is more probable that the price
predictionh,. Note that in Fig. 2() the dotted lines indicate will rise rather than fall wher,=+1. These two effects en-
\{ =Propt aNAN{ =1y o Which, in this case, correspond to sure that in equilibrium(between ELCpthe price is an
A\ =0 and\; =0, respectively. The paragraph labels belowincreasing function of time. We can see in Fig. 21 that one of
correspond to the labels in Fig. @). the effects of the ELC described in this section is to halt and
a. Perioda, in which A,=+h,, provides the trigger that even briefly reverse this continuous price rise.
causes the activation and deactivation of zero and one The fundamental reason for this behavior is that, as we
agents. remarked in Sec. Il, the agents in the GCGM are unable to
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avalanches in Ref32]) follows an inverse power law with
exponent=-1.

If the duration distribution were found to display power
law behavior, this might indicate that the theory of self-
organized criticality was applicable to the GCGM. However,
the measured exponents of —4.2 and —-7.2 are very different
from the value of -1 reported in Refgd1,32. Furthermore,
the data in Fig. 22 are not sufficient to draw such a conclu-
sion, and obtaining reliable data over a range of valuestof
sufficient to do so is prohibitively computationally intensive.
This point requires further investigation.

logyy P

FIG. 22. Numerical distribution functions for the probabil®y
of an ELC of durationAt occurring in the GCGM with memory. H. Summary of ELC characteristics

The sets of data points correspond to the valuesi@ind N indi- We have seen how ELCs can occur in the GCGM as a
cated. The dashed lines represent inverse power law distributionrs

with exponents 4.2 and 7.2, esu_lt of thg susceptibility of_the gene va_Iue distributR(p)
to triggers in the global action time seridg We also saw

] ] ) that between ELCs the self-segregation of the agents in-
control directly whether they will buy or sell at each time egses the susceptibility &f(p) while this process is re-

step. They can control only the probability with which they | o .qaq during an ELC. Furthermore, we saw that an ELC in

will follow the predictionhy. As we saw in Sec. Il the opti- e memoryless GCGM leads to approximately periodic os-
mum behavior for the agents is to evolve such that the excessjiations in a derived price time series. In contrast, the price

demand will be zero wheh, takes its most common valué e series in the full GCGM is a divergent quantity resulting
(hy=+1 in the case of>0.5). Therefore, in the asymmetric . the inability of the agents to Contm?ht directly. In

case of # 0.5, the magnitude of the excess QemArwiII be both models ELCs lead to approximately periodic volume
large whenh, takes the opposite value. This represents th%scillations.

agents mistakenly believing the prediction, which in turn
leads to an excess of buyers or sellerslfa0.5 andl > 0.5,
respectively. IV. CONCLUSIONS

Johansen and Sornette have provided evidgags(Q In this section we provide a brief summary of the main

:E?; :?rgerﬁggﬁtc&?ﬂ?%iz |?r;|n32r?(|:al wﬁlrrnksvtﬁi?;ﬁig:sewrice results presented in this paper. For more details we refer the
q y 9€ PIICE€ o ader to Secs. 113 and 11l H. In Sec. Il C we showed that a

changes occur cannot be predicted using the distribution o implified genetic model that made no use of memory is
;maller price changes. From the results presented in th_is S€iore efficient(for 1# 0.5 in accessing the available re-

tion, we can see that the large .char_lges. that oceur in thources than the original genetic model. Furthermore, in Sec.
volume during ELCs are also outliers in this sense. The dls—I E we demonstrated that the reason for this is that in the

tribution of volume changes between E_I_Cs is such tha emoryless model the agents can contnﬁll directly,
changes of the magnitude observed during an ELC occur ; L 1. .

. o ; whereas in the original mode[* is also a function ofy. In
with a very small probability. As we saw in Sec. llID a

different mechanisnji.e., that of the susceptibility olP(p) sec. Il - we showed_ that, i, is ge.nerated by a random .
. oo . exogenous source with an appropriate mean value, then in
and the occurrence of triggers &) is responsible for the

+1 +1 - . g
occurrence of ELCs, which therefore occur with a much S of {n;  and oy ’t). the two models are indistin-
greater probability. guishable. We not_ed_ tha; W|th0ut_ such an external source the
two models are distinguishable in terms of these two quan-
] o tities for | # 0.5.
G. ELC duration distribution In Secs. I1G and Il H we demonstrated that the values
Finally in this section, we shall take a brief look at the taken by(h); are a direct result of the deviation pf from
distribution function of the duratiotht of ELC. Numerical the optimal value of Eq(16), but that this does not result
simulations using the memoryless model suggest that the di$rom the nonzero standard deviation of the gene value distri-
tribution function is of the form of a Gaussian. Figure 22 bution.
shows this distribution function in the full GCGM as well as  Section Ill showed that the memory introduces nonzero
straight line fits forAtZ 60. The figure suggests that, while autocorrelations into thé, and n{l time series. Thus, for
short ELCs may follow a Gaussian duration distribution, # 0.5, the original and memoryless models are distinguish-
longer changes are better fitted by an inverse power law. able even ifh, is derived from a random exogenous source,
Bak, Tang, and Wiesenfeli81,32 introduced the theory rather than being constant. Section Ill B provided a Markov-
of self-organized criticality which seeks to explain the occur-ian analysis that showed how the autocorrelation function of
rence of inverse power law distributions in nature. Referencé, resulted from the cycles performed by the model in the
[32] describes two- and higher dimensional systems, whiclstate space of the memory.
are shown to self-organize to a critical point where the dis- In Sec. Il we introduced a different version of the genetic
tribution of the magnitude and duration shocks(called model(GCGM) in which the number of active agents was no
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longer fixed. Section Il E provided a detailed description ofto establish whether reducing the prize-to-fine ratio sup-
how a memoryless GCGM undergoes large self-inducegresses the occurrence of ELCs.
shocks and discussed the effect of such shocks on external Most importantly, we showed in Secs. Il G and Il H that
observables such as the volume and price. Section Il F exXor the original genetic model in equilibrium deviates from
tended this discussion to the full GCGM including memory.the optimal value given in Eq.16). This apparently small
deviation is important since it determines the values taken by
V. FUTURE DIRECTIONS (hp: and the magnitude of the autocorrelations observed in
) ) ] ) theh; time series. We have shown that since this effect is not
This paper leaves open several interesting questions thgtesent in the memoryless genetic model it does not result
we hope will be addressed by future work. First of all in Sec.from the finite standard deviation of the gene value distribu-

IIl we considered only the case in which the death s@i8  {jon, put must instead result from the action of the memory.
less than the confidence intervl The result of this is that \ye hope that future work will provide clarification of this

agents mutate over a shorter time scale than the period ¢foint.
oscillation of an ELC. We would expect that valuesob T Finally, more work is required to establish to what extent,
would lead to ELCs that persisted for many more periods. it any, the ELC duration distribution function described in

We have taken the ratio of the number of points gained bysec |1 G represents an inverse power law and to clarify the
an agent wherg;;=+A; to those lost whera;;=-A; 10 be  effect of memory on this function.
unity. Hod and Nakaf8] demonstrated that for values of this

prize-to-fineratio R<1 the self-segregation of the gene
value distribution[3] is replaced by clustering behavior in
which the agents tend to evolve towagpg=0.5 in equilib- We are extremely grateful to P. M. Hui and T. S. (®©hi-
rium (see also Refg§33,34)). We saw in Sec. Il D 1 that this nese University of Hong Kongor detailed discussions, and
clustered gene value distribution is not susceptible to théor sharing their results with us. R.K. is supported by the
trigger sequences that cause ELCs. Further work is requireédPSRC.
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